Data Quality Reports for Session: 111354 User: anuskitade Completed: 04/01/2008


TABLE OF CONTENTS

DQR IDSubjectData Streams Affected
D040220.1TWP/MWR/C1 - wrong azimuthtwpmwrlosC1.b1
D060420.6TWP/MWR/C1 - Software ChangetwpmwrlosC1.b1
D060420.9TWP/MWR/C1 - software upgrade (version 3.29)twpmwrlosC1.b1


DQRID : D040220.1
Start DateStart TimeEnd DateEnd Time
10/11/1996000002/18/20042250
Subject:
TWP/MWR/C1 - wrong azimuth
DataStreams:twpmwrlosC1.b1
Description:
The MWR was initially installed at an azimuth angle defined as 180 degrees but the value 
in the configuration file was not changed from the default of 0 degrees. In examining 
photos taken during the installation of the AWS tower, I noticed that the MWR was rotated 
opposite the normal orientation. The value in the configuration file was changed to reflect 
the actual azimuth of the instrument.
Measurements:twpmwrlosC1.b1:
  • Actual Azimuth(actaz)


Back To Table of Contents

DQRID : D060420.6
Start DateStart TimeEnd DateEnd Time
10/11/1996000002/27/19991200
Subject:
TWP/MWR/C1 - Software Change
DataStreams:twpmwrlosC1.b1
Description:
The MWR operating software was changed on 27 February 1999 to provide additional
functionality as described below.
   
NEW FEATURES
1. Faster sampling rate
   
Standard line-of-sight (LOS) observations can now be acquired at 15-second intervals vs. 
20-second intervals previously. (The standard LOS cycle is comprised of one sky sample per 
blackbody sample and gain update.)
   
2. More flexible sampling strategy
   
Multiple sky observations can be acquired during a LOS cycle, up to 1024 per gain update. 
This permits sky samples to be acquired at intervals of 2.67 seconds for improved 
temporal resolution of cloud liquid water variations and better coordination with the millimeter 
cloud radar during IOPs.
   
3. Separation of zenith LOS observations from TIP data
   
When the radiometer is in TIP mode, the zenith LOS observations are now extracted, the PWV 
and LWP computed and reported separately in the output file. This eliminates the periods 
of missing LOS data during calibration checks/updates.
   
4. Automatic self-calibration
   
The software now permits the calibration to be updated at specified intervals or 
continuously. In the first case, LOS mode is automatically changed to TIP mode at user-specified 
intervals or whenever clear sky conditions occur, the tip data reduced, the calibration 
updated, and the radiometer returned to LOS mode without operator intervention. In the 
second case, the radiometer is continuously is TIP mode until changed by the operator.
   
5. Graphical user display
   
The graphical display is comprised of a status display, a message display, a temperature 
plot, a plot of the retrieved PWV and LWP, and (in TIP mode) a plot of the latest tip 
curves.
Measurements:twpmwrlosC1.b1:
  • (tknd)
  • 31.4 GHz blackbody(bb31)
  • Mixer kinetic (physical) temperature(tkxc)
  • 31.4 GHz sky signal(sky31)
  • base time(base_time)
  • Sky brightness temperature at 31.4 GHz(tbsky31)
  • Dummy altitude for Zeb(alt)
  • Actual elevation angle(actel)
  • Temperature correction coefficient at 23.8 GHz(tc23)
  • Temperature correction coefficient at 31.4 GHz(tc31)
  • IR Brightness Temperature(ir_temp)
  • 31.4 GHz blac2body+noise injection signal(bbn31)
  • Water on Teflon window (1=WET, 0=DRY)(wet_window)
  • MWR column precipitable water vapor(vap)
  • 23.8 GHz blackbody+noise injection signal(bbn23)
  • Ambient temperature(tkair)
  • Noise injection temp at nominal temperature at 31.4 GHz(tnd_nom31)
  • Sky brightness temperature at 23.8 GHz(tbsky23)
  • Time offset of tweaks from base_time(time_offset)
  • Averaged total liquid water along LOS path(liq)
  • Noise injection temp at nominal temperature at 23.8 GHz(tnd_nom23)
  • Sky Infra-Red Temperature(sky_ir_temp)
  • Actual Azimuth(actaz)
  • 23.8 GHz Blackbody signal(bb23)
  • 23.8 GHz sky signal(sky23)
  • lon(lon)
  • Noise injection temp at 31.4 GHz adjusted to tkbb(tnd31)
  • Noise injection temp at 23.8 GHz adjusted to tkbb(tnd23)
  • Blackbody kinetic temperature(tkbb)
  • lat(lat)


Back To Table of Contents

DQRID : D060420.9
Start DateStart TimeEnd DateEnd Time
10/11/1996000003/15/19991700
Subject:
TWP/MWR/C1 - software upgrade (version 3.29)
DataStreams:twpmwrlosC1.b1
Description:
The MWR operating program was upgraded to version 3.29 on 15 March 1999. This version 
included a beam width correction as well as provided the capability to automatically level 
the elevation mirror (that is, to automatically detect and correct offsets in the elevation 
angle stepper motor position.)
   
The improvement in the quality of the tip curves resulting from the auto-leveling has been 
dramatic: differences in the brightness temperatures at 3 airmasses (19.5 and 160.5 
degrees) have been reduced from +/- 5 K to +/- 0.5 K. In order to take full advantage of this 
improvement to detect and reject cloudy tip curves, the minimum value of the 
goodness-of-fit coefficient for a valid tip curve has been increased from 0.995 to 0.998.
Measurements:twpmwrlosC1.b1:
  • MWR column precipitable water vapor(vap)
  • Sky brightness temperature at 31.4 GHz(tbsky31)
  • Sky brightness temperature at 23.8 GHz(tbsky23)
  • Averaged total liquid water along LOS path(liq)


Back To Table of Contents



END OF DATA