Data Quality Reports for Session: 111907 User: sbenson Completed: 05/10/2008


TABLE OF CONTENTS

DQR IDSubjectData Streams Affected
D030902.1SGP/MWR/C1 - no air temperature signalsgpmwrlosC1.b1, sgpmwrtipC1.a1
D041001.3SGP/MWR/C1 - Instrument problemsgpmwrlosC1.a1, sgpmwrlosC1.b1, sgpmwrtipC1.a1
D041014.1SGP/MWR/C1 - thermal instabilitysgpmwrlosC1.a1, sgpmwrlosC1.b1, sgpmwrtipC1.a1
D041117.2SGP/MWR/C1 - Reprocess: wrong retrievalssgpmwrlosC1.a1, sgpmwrlosC1.b1, sgpmwrtipC1.a1, sgpqmemwrcolC1.c1
D050722.1SGP/MWR/C1 - REPROCESS - Revised Retrieval Coefficientssgp1mwravgC1.c1, sgp5mwravgC1.c1, sgpmwrlosC1.a1, sgpmwrlosC1.b1, sgpmwrtipC1.a1,
sgpqmemwrcolC1.c1
D051011.6SGP/MWR/C1 - New software version (4.15) installedsgpmwrlosC1.b1, sgpmwrtipC1.a1
D080103.2SGP/MWR/C1 - Missing datasgpmwrlosC1.b1


DQRID : D030902.1
Start DateStart TimeEnd DateEnd Time
08/22/2003211509/30/20041835
Subject:
SGP/MWR/C1 - no air temperature signal
DataStreams:sgpmwrlosC1.b1, sgpmwrtipC1.a1
Description:
When the new blower was upgraded by Radiometrics and reinstalled on the MWR, the air 
temperature sensor failed to properly report. It was determined that the wires carrying the 
signal to the analog board did not conform to the standard expected by the upgraded blower. 
The problem was corrected by changing the wiring.
Measurements:sgpmwrtipC1.a1:
  • Ambient temperature(tkair)

sgpmwrlosC1.b1:
  • Ambient temperature(tkair)


Back To Table of Contents

DQRID : D041001.3
Start DateStart TimeEnd DateEnd Time
09/21/2004211409/24/20041354
09/26/2004233209/27/20040317
09/27/2004121409/30/20041820
Subject:
SGP/MWR/C1 - Instrument problem
DataStreams:sgpmwrlosC1.a1, sgpmwrlosC1.b1, sgpmwrtipC1.a1
Description:
The MWR mixer temperature, blackbody temperature, and moisture flag are incorrect. This 
began when the instrument was returned to service after the analog board was temporarily 
removed to check the presence and absence of certain resistors. The board must have been 
accidently damaged during this process.
Measurements:sgpmwrtipC1.a1:
  • Noise injection temp at 23.8 GHz adjusted to tkbb(tnd23)
  • (tknd)
  • Noise injection temp at 23.8 GHz derived from this tip(tnd23I)
  • Water on Teflon window (1=WET, 0=DRY)(wet_window)
  • Noise injection temp at 31.4 GHz derived from this tip(tnd31I)
  • Temperature correction coefficient at 31.4 GHz(tc31)
  • Noise injection temp at 31.4 GHz adjusted to tkbb(tnd31)
  • Blackbody kinetic temperature(tkbb)
  • Noise injection temp at nominal temperature at 31.4 GHz(tnd_nom31)
  • Temperature correction coefficient at 23.8 GHz(tc23)
  • Ambient temperature(tkair)
  • Mixer kinetic (physical) temperature(tkxc)
  • Noise injection temp at nominal temperature at 23.8 GHz(tnd_nom23)

sgpmwrlosC1.b1:
  • Water on Teflon window (1=WET, 0=DRY)(wet_window)
  • (tknd)
  • Noise injection temp at nominal temperature at 31.4 GHz(tnd_nom31)
  • Noise injection temp at 23.8 GHz adjusted to tkbb(tnd23)
  • Noise injection temp at 31.4 GHz adjusted to tkbb(tnd31)
  • Noise injection temp at nominal temperature at 23.8 GHz(tnd_nom23)
  • Temperature correction coefficient at 31.4 GHz(tc31)
  • Blackbody kinetic temperature(tkbb)
  • Ambient temperature(tkair)
  • Mixer kinetic (physical) temperature(tkxc)
  • Temperature correction coefficient at 23.8 GHz(tc23)

sgpmwrlosC1.a1:
  • Water on Teflon window (1=WET, 0=DRY)(wet_window)
  • Noise injection temp at 31.4 GHz adjusted to tkbb(tnd31)
  • Temperature correction coefficient at 31.4 GHz(tc31)
  • Blackbody kinetic temperature(tkbb)
  • Temperature correction coefficient at 23.8 GHz(tc23)
  • Noise injection temp at 23.8 GHz adjusted to tkbb(tnd23)
  • Noise injection temp at nominal temperature at 31.4 GHz(tnd_nom31)
  • (tknd)
  • Ambient temperature(tkair)
  • Noise injection temp at nominal temperature at 23.8 GHz(tnd_nom23)
  • Mixer kinetic (physical) temperature(tkxc)


Back To Table of Contents

DQRID : D041014.1
Start DateStart TimeEnd DateEnd Time
09/30/2004183510/13/20042118
Subject:
SGP/MWR/C1 - thermal instability
DataStreams:sgpmwrlosC1.a1, sgpmwrlosC1.b1, sgpmwrtipC1.a1
Description:
The analog board was replaced with a spare (D041001.3) with a reference temperature that 
was set too low (306 K) so that during periods of high ambient temperature, the instrument 
became thermally unstable. The problem was corrected when the temperature setting was 
increased (to 311 K).
Measurements:sgpmwrtipC1.a1:
  • 31.4 GHz sky brightness temperature derived from tip curve(tbsky31tip)
  • 23.8 GHz sky brightness temperature derived from tip curve(tbsky23tip)
  • Total liquid water along zenith path using tip-derived brightness temperatures(liqtip)
  • Total water vapor along zenith path using tip-derived brightness temperatures(vaptip)

sgpmwrlosC1.b1:
  • Sky brightness temperature at 31.4 GHz(tbsky31)
  • MWR column precipitable water vapor(vap)
  • Sky brightness temperature at 23.8 GHz(tbsky23)
  • Averaged total liquid water along LOS path(liq)

sgpmwrlosC1.a1:
  • Averaged total liquid water along LOS path(liq)
  • MWR column precipitable water vapor(vap)
  • Sky brightness temperature at 31.4 GHz(tbsky31)
  • Sky brightness temperature at 23.8 GHz(tbsky23)


Back To Table of Contents

DQRID : D041117.2
Start DateStart TimeEnd DateEnd Time
09/21/2004164311/11/20042100
Subject:
SGP/MWR/C1 - Reprocess: wrong retrievals
DataStreams:sgpmwrlosC1.a1, sgpmwrlosC1.b1, sgpmwrtipC1.a1, sgpqmemwrcolC1.c1
Description:
When the computer and core configuration were upgraded, retrieval coefficients for BF1 
were accidently included in the configuration file.
The correct coefficients for CF1 were applied when the configuration file was updated.
Measurements:sgpmwrtipC1.a1:
  • Total liquid water along zenith path using tip-derived brightness temperatures(liqtip)
  • Total water vapor along zenith path using tip-derived brightness temperatures(vaptip)

sgpmwrlosC1.b1:
  • MWR column precipitable water vapor(vap)
  • Averaged total liquid water along LOS path(liq)

sgpqmemwrcolC1.c1:
  • Ensemble average for MWR vapor in window centered about balloon release(mean_vap_mwr)
  • Ensemble average for MWR liquid in window centered about balloon release(mean_liq_mwr)

sgpmwrlosC1.a1:
  • Averaged total liquid water along LOS path(liq)
  • MWR column precipitable water vapor(vap)


Back To Table of Contents

DQRID : D050722.1
Start DateStart TimeEnd DateEnd Time
04/16/2002200006/28/20052300
Subject:
SGP/MWR/C1 - REPROCESS - Revised Retrieval Coefficients
DataStreams:sgp1mwravgC1.c1, sgp5mwravgC1.c1, sgpmwrlosC1.a1, sgpmwrlosC1.b1, sgpmwrtipC1.a1,
sgpqmemwrcolC1.c1
Description:
IN THE BEGINNING (June 1992), the retrieval coefficients used to derive the precipitable 
water vapor (PWV) and liquid water path (LWP) from the MWR brightness temperatures were 
based on the Liebe and Layton (1987) water vapor and oxygen absorption model and the Grant 
(1957) liquid water absorption model.  

Following the SHEBA experience, revised retrievals based on the more recent Rosenkranz 
(1998) water vapor and oxygen absorption models and the Liebe (1991) liquid waer absorption 
model were developed.  The Rosenkranz water vapor absorption model resulted a 2 percent 
increase in PWV relative to the earlier Liebe and Layton model.  The Liebe liquid water 
absorption model decreased the LWP by 10% relative to the Grant model.  However, the 
increased oxygen absorption caused a 0.02-0.03 mm (20-30 g/m2) reduction in LWP, which was 
particularly significant for low LWP conditions (i.e. thin clouds encountered at SHEBA).

Recently, it has been shown (Liljegren, Boukabara, Cady-Pereira, and Clough, TGARS v. 43, 
pp 1102-1108, 2005) that the half-width of the 22 GHz water vapor line from the HITRAN 
compilation, which is 5 percent smaller than the Liebe and Dillon (1969) half-width used in 
Rosenkranz (1998), provided a better fit to the microwave brightness temperature 
measurements at 5 frequencies in the range 22-30 GHz, and yielded more accurate retrievals.  
Accordingly, revised MWR retrieval coefficients have been developed using MONORTM, which 
utilizes the HITRAN compilation for its spectroscopic parameters.  These new retrievals 
provide 3 percent less PWV and 2.6 percent greater LWP than the previous retrievals based on 
Rosenkranz (1998).

Although the MWR data will be reprocessed to apply the new monortm-based retrievals, for 
most purposes it will be sufficient to correct the data using the following factors:

PWV_MONORTM = 0.9695 * PWV_ROSENKRANZ
LWP_MONORTM = 1.026  * LWP_ROSENKRANZ

The Rosenkranz-based retrieval coefficients became active as follows (BCR 456):
SGP/C1 (Lamont)     4/16/2002, 2000
SGP/B1 (Hillsboro)  4/12/2002, 1600
SGP/B4 (Vici)       4/15/2002, 2300
SGP/B5 (Morris)     4/15/2002, 2300
SGP/B6 (Purcell)    4/16/2002, 2200
SGP/E14(Lamont)     4/16/2002, 0000
NSA/C1 (Barrow)     4/25/2002, 1900 
NSA/C2 (Atqasuk)    4/18/2002, 1700
TWP/C1 (Manus)      5/04/2002, 0200
TWP/C2 (Nauru)      4/27/2002, 0600
TWP/C3 (Darwin)     inception

The MONORTM-based retrieval coefficients became active as follows (BCR 984):

SGP/C1 (Lamont)     6/28/2005, 2300
SGP/B1 (Hillsboro)  6/24/2005, 2100
SGP/B4 (Vici)       6/24/2005, 2100
SGP/B5 (Morris)     6/24/2005, 2100
SGP/B6 (Purcell)    6/24/2005, 1942
SGP/E14(Lamont)     6/28/2005, 2300
NSA/C1 (Barrow)     6/29/2005, 0000 
NSA/C2 (Atqasuk)    6/29/2005, 0000
TWP/C1 (Manus)      6/30/2005, 2100
TWP/C2 (Nauru)      6/30/2005, 2100
TWP/C3 (Darwin)     6/30/2005, 2100
PYE/M1 (Pt. Reyes)  4/08/2005, 1900**

** At Pt. Reyes, the original retrieval coefficients implemented in March 2005 were based 
on a version of the Rosenkranz model that had been modified to use the HITRAN half-width 
at 22 GHz and to be consistent with the water vapor continuum in MONORTM.  These 
retrievals yield nearly identical results to the MONORTM retrievals.  Therefore the Pt. Reyes 
data prior to 4/08/2005 may not require reprocessing.
Measurements:sgpmwrtipC1.a1:
  • Total liquid water along zenith path using tip-derived brightness temperatures(liqtip)
  • Total water vapor along zenith path using tip-derived brightness temperatures(vaptip)

sgp5mwravgC1.c1:
  • MWR column precipitable water vapor(vap)
  • Averaged total liquid water along LOS path(liq)

sgpmwrlosC1.b1:
  • MWR column precipitable water vapor(vap)
  • Averaged total liquid water along LOS path(liq)

sgp1mwravgC1.c1:
  • Averaged total liquid water along LOS path(liq)
  • MWR column precipitable water vapor(vap)

sgpqmemwrcolC1.c1:
  • Ensemble average for MWR vapor in window centered about balloon release(mean_vap_mwr)
  • Ensemble average for MWR liquid in window centered about balloon release(mean_liq_mwr)

sgpmwrlosC1.a1:
  • Averaged total liquid water along LOS path(liq)
  • MWR column precipitable water vapor(vap)


Back To Table of Contents

DQRID : D051011.6
Start DateStart TimeEnd DateEnd Time
07/31/2002202708/04/20051959
Subject:
SGP/MWR/C1 - New software version (4.15) installed
DataStreams:sgpmwrlosC1.b1, sgpmwrtipC1.a1
Description:
A problem began with the installation of MWR.EXE version 4.12 in July 2002. The software 
had been upgraded from a "DOS" to a "Windows"-compiled program to address an earlier 
problem.  The software upgrade corrected the earlier problem but introduced a new one that 
caused line-of-sight observing cycles to be skipped, a 15% reduction in the number of tip 
curves, and saturation of CPU usage. Software versions 4.13 and 4.14 also produced these 
problems.

The new MWR software, version 4.15, was installed on 08/04/2005. As a consequence of this 
upgrade, the tip curve frequency increased. The tip cycle time decreased from ~60s to 
~50s.
Measurements:sgpmwrtipC1.a1:
  • 31.4 GHz blac2body+noise injection signal(bbn31)
  • Noise injection temp at 23.8 GHz adjusted to tkbb(tnd23)
  • 31.4 GHz blackbody(bb31)
  • Noise injection temp at 23.8 GHz derived from this tip(tnd23I)
  • (tknd)
  • 31.4 GHz sky signal(tipsky31)
  • Noise injection temp at 31.4 GHz derived from this tip(tnd31I)
  • Total liquid water along zenith path using tip-derived brightness temperatures(liqtip)
  • Temperature correction coefficient at 31.4 GHz(tc31)
  • Noise injection temp at 31.4 GHz adjusted to tkbb(tnd31)
  • 23.8 GHz Blackbody signal(bb23)
  • Blackbody kinetic temperature(tkbb)
  • Noise injection temp at nominal temperature at 31.4 GHz(tnd_nom31)
  • 23.8 GHz sky signal(tipsky23)
  • Ambient temperature(tkair)
  • Temperature correction coefficient at 23.8 GHz(tc23)
  • Total water vapor along zenith path using tip-derived brightness temperatures(vaptip)
  • Mixer kinetic (physical) temperature(tkxc)
  • Noise injection temp at nominal temperature at 23.8 GHz(tnd_nom23)
  • 23.8 GHz blackbody+noise injection signal(bbn23)
  • 31.4 GHz sky brightness temperature derived from tip curve(tbsky31tip)
  • 31.4 GHz goodness-of-fit coefficient(r31)
  • 23.8 GHz sky brightness temperature derived from tip curve(tbsky23tip)
  • 23.8 GHz goodness-of-fit coefficient(r23)

sgpmwrlosC1.b1:
  • 31.4 GHz sky signal(sky31)
  • (tknd)
  • 31.4 GHz blac2body+noise injection signal(bbn31)
  • Noise injection temp at nominal temperature at 31.4 GHz(tnd_nom31)
  • Noise injection temp at 23.8 GHz adjusted to tkbb(tnd23)
  • 23.8 GHz sky signal(sky23)
  • Sky brightness temperature at 31.4 GHz(tbsky31)
  • 23.8 GHz blackbody+noise injection signal(bbn23)
  • Noise injection temp at 31.4 GHz adjusted to tkbb(tnd31)
  • Averaged total liquid water along LOS path(liq)
  • Noise injection temp at nominal temperature at 23.8 GHz(tnd_nom23)
  • 31.4 GHz blackbody(bb31)
  • Temperature correction coefficient at 31.4 GHz(tc31)
  • Blackbody kinetic temperature(tkbb)
  • Sky Infra-Red Temperature(sky_ir_temp)
  • MWR column precipitable water vapor(vap)
  • Ambient temperature(tkair)
  • 23.8 GHz Blackbody signal(bb23)
  • Sky brightness temperature at 23.8 GHz(tbsky23)
  • Mixer kinetic (physical) temperature(tkxc)
  • Temperature correction coefficient at 23.8 GHz(tc23)


Back To Table of Contents

DQRID : D080103.2
Start DateStart TimeEnd DateEnd Time
07/21/1993180907/23/19931541
08/07/1993214308/09/19931308
08/14/1993223308/16/19931300
08/29/1993120708/31/19931206
09/17/1993215809/20/19931311
10/02/1993161210/04/19931338
10/09/1993074110/11/19931319
11/12/1993120711/15/19931413
11/19/1993202711/21/19931957
12/14/1993230003/21/19941759
03/28/1994145903/30/19942225
05/16/1994190005/19/19942018
06/22/1994160007/11/19941859
07/16/1994030007/19/19942006
09/03/1994164709/05/19941341
09/09/1994232509/11/19941543
12/17/1994004912/19/19941441
01/05/1995000001/05/19952359
01/28/1995005401/30/19951443
04/01/1995000004/03/19951610
05/09/1995220005/11/19952350
06/24/1995090306/26/19950159
07/07/1995162507/10/19951409
07/19/1995174107/21/19951906
07/28/1995190007/31/19951918
08/22/1995161608/25/19952359
12/01/1995143401/11/19962214
01/12/1996200001/23/19962030
01/23/1996233202/08/19962359
08/06/1996000008/06/19962359
09/04/1996191009/08/19962359
09/14/1996070009/16/19961759
09/30/1996000009/30/19962359
12/01/1996000012/01/19962359
07/01/1997000007/01/19972359
02/20/1998233902/22/19980042
05/04/1998000005/04/19982359
07/18/1998033707/20/19981355
09/28/1998000009/28/19982359
10/10/1998235910/12/19981959
10/17/1998170510/19/19981535
12/25/1998223312/28/19982026
02/06/1999123502/08/19991652
03/13/1999204803/15/19992040
07/23/1999205907/26/19991408
12/04/1999080012/06/19991821
01/07/2000144602/02/20002224
05/24/2000145505/31/20001505
06/06/2000162006/14/20001451
09/01/2000220009/05/20001526
09/15/2000205709/18/20001339
09/23/2000123609/25/20001430
01/13/2001201101/16/20011647
02/24/2001023002/26/20011508
03/03/2001070103/05/20011546
03/10/2001070203/12/20011535
03/17/2001070203/19/20011422
03/24/2001070303/26/20011516
03/30/2001203804/02/20011423
05/05/2001104205/07/20011514
05/18/2001153405/21/20011451
06/22/2001220006/25/20011438
06/30/2001061607/02/20011435
07/28/2001194407/30/20011357
08/24/2001134808/27/20011751
09/07/2001184209/10/20011439
09/15/2001153309/17/20011459
10/13/2001003310/15/20011526
11/03/2001084011/05/20011613
11/10/2001055811/13/20011518
11/16/2001170111/19/20011706
12/21/2001215312/24/20011442
01/30/2002084502/11/20021632
03/02/2002033903/04/20021533
03/09/2002034003/11/20021621
06/26/2002163906/28/20022057
09/01/2002100209/03/20021332
12/21/2002112412/23/20021510
01/04/2003070301/06/20031529
08/09/2003003708/11/20031456
08/23/2003210108/25/20031456
10/12/2003202510/14/20031414
11/29/2003184012/01/20031502
01/24/2004074301/26/20041505
02/14/2004231602/17/20041520
09/04/2004025009/07/20041419
10/09/2004074510/11/20041739
10/16/2004225010/18/20041355
11/13/2004184911/15/20041521
12/03/2004194012/06/20041454
01/15/2005065201/18/20051446
01/22/2005144901/24/20051444
06/10/2005211806/13/20051603
08/05/2005170108/30/20052001
10/07/2005165811/16/20051945
11/18/2005180111/21/20051521
11/23/2005220111/25/20051550
11/26/2005010111/28/20051543
12/03/2005104312/05/20051559
01/14/2006182201/17/20061512
01/21/2006070801/23/20061515
02/03/2006190302/06/20061533
02/25/2006073002/27/20061420
07/01/2006222507/03/20061413
11/28/2006214312/01/20061911
06/09/2007115006/11/20071300
07/07/2007164207/09/20071304
08/03/2007160111/19/20072135
12/22/2007211212/24/20071504
Subject:
SGP/MWR/C1 - Missing data
DataStreams:sgpmwrlosC1.b1
Description:
Data are missing and unrecoverable.
Measurements:sgpmwrlosC1.b1:
  • 31.4 GHz sky signal(sky31)
  • Water on Teflon window (1=WET, 0=DRY)(wet_window)
  • Dummy altitude for Zeb(alt)
  • (tknd)
  • 31.4 GHz blac2body+noise injection signal(bbn31)
  • Noise injection temp at 23.8 GHz adjusted to tkbb(tnd23)
  • Noise injection temp at nominal temperature at 31.4 GHz(tnd_nom31)
  • 23.8 GHz sky signal(sky23)
  • 23.8 GHz blackbody+noise injection signal(bbn23)
  • Sky brightness temperature at 31.4 GHz(tbsky31)
  • lon(lon)
  • Noise injection temp at 31.4 GHz adjusted to tkbb(tnd31)
  • Averaged total liquid water along LOS path(liq)
  • 31.4 GHz blackbody(bb31)
  • Noise injection temp at nominal temperature at 23.8 GHz(tnd_nom23)
  • Temperature correction coefficient at 31.4 GHz(tc31)
  • Blackbody kinetic temperature(tkbb)
  • Sky Infra-Red Temperature(sky_ir_temp)
  • MWR column precipitable water vapor(vap)
  • Ambient temperature(tkair)
  • 23.8 GHz Blackbody signal(bb23)
  • Sky brightness temperature at 23.8 GHz(tbsky23)
  • Mixer kinetic (physical) temperature(tkxc)
  • Temperature correction coefficient at 23.8 GHz(tc23)
  • lat(lat)
  • Time offset of tweaks from base_time(time_offset)
  • base time(base_time)


Back To Table of Contents



END OF DATA