Data Quality Reports for Session: 100254 User: deslover Completed: 06/28/2006


TABLE OF CONTENTS

DQR IDSubjectData Streams Affected
D030515.3NSA/MWR/C1 - no air temperature signalnsamwrC1.00, nsamwrlosC1.b1, nsamwrtipC1.a1
D040722.2NSA/METTWR/C1 - Chilled Mirror transmit logic board chipset unsuited for Arctic
temperatures
nsamettwr4hC1.b1
D050527.2NSA/METTWR/C1 - Incorrect Maximum for Precip Valuesnsamettwr4hC1.b1
D050725.7NSA/MWR/C1 - Reprocess: Revised Calibration CoefficientsnsamwrlosC1.a1, nsamwrlosC1.b1, nsamwrtipC1.a1, nsa5mwravgC1.c1, nsaqmemwrcolC1.c1
D050928.3NSA/MWR/C1 - New software version (4.15) installednsamwrlosC1.b1, nsamwrtipC1.a1
D051025.2NSA/METTWR/C1 - Data 1-minute behindnsamettwr4hC1.b1
D051101.4NSA/METTWR/C1 - Reprocess: Wind direction data incorrectnsamettwr4hC1.b1


DQRID : D030515.3
Start DateStart TimeEnd DateEnd Time
05/13/200319601/15/2005054
Subject:
NSA/MWR/C1  - no air temperature signal
DataStreams:nsamwrC1.00, nsamwrlosC1.b1, nsamwrtipC1.a1
Description:
When the new blower was upgraded by Radiometrics and reinstalled on the MWR, the air 
temperature sensor failed to properly report. It was determined that the wires carrying the 
signal to the analog board did not conform to the standard expected by the upgraded blower. 
The problem was corrected by changing the wiring and modifying the MWR software to read 
the signal from the appropriate corresponding channel.
Measurements:nsamwrC1.00:
  • Raw data stream - documentation not supported(Raw data stream - documentation not supported)

nsamwrlosC1.b1:
  • Ambient temperature(tkair)

nsamwrtipC1.a1:
  • Ambient temperature(tkair)


Back To Table of Contents

DQRID : D040722.2
Start DateStart TimeEnd DateEnd Time
11/01/20030004/23/20041858
Subject:
NSA/METTWR/C1 - Chilled Mirror transmit logic board chipset unsuited for Arctic 
temperatures
DataStreams:nsamettwr4hC1.b1
Description:
Data missing due to problems with manufacturer's transmit logic board chipset.  They were 
generic chips not rated for Arctic temperatures.
Measurements:nsamettwr4hC1.b1:
  • Chilled Mirror Calculated Relative Humidity(CMHRH)
  • Chilled Mirror Dew Point(CMHDP)
  • Chilled Mirror Temperature(CMHTemp)
  • Chilled Mirror Calculated Saturation Vapor Pressure(SatVPCMH)


Back To Table of Contents

DQRID : D050527.2
Start DateStart TimeEnd DateEnd Time
10/31/20030005/26/20051014
Subject:
NSA/METTWR/C1 - Incorrect Maximum for Precip Values
DataStreams:nsamettwr4hC1.b1
Description:
The max values for cumulative rain sum of 99 mm and the rain rate of 999 mm/hr are 
incorrect.  In communication with the manufacturer it has been found that the manual was in 
error.  The actual max values of the cumulative rain sum is 99.99 mm and the rain rate is 
999.99 mm/hr.
Measurements:nsamettwr4hC1.b1:
  • Precipitation Rate(PcpRate)
  • Cumulative Water Sum(CumH2O)


Back To Table of Contents

DQRID : D050725.7
Start DateStart TimeEnd DateEnd Time
04/25/200219006/29/200500
Subject:
NSA/MWR/C1 - Reprocess: Revised Calibration Coefficients
DataStreams:nsamwrlosC1.a1, nsamwrlosC1.b1, nsamwrtipC1.a1, nsa5mwravgC1.c1, nsaqmemwrcolC1.c1
Description:
IN THE BEGINNING (June 1992), the retrieval coefficients used to derive 
the precipitable water vapor (PWV) and liquid water path (LWP) from the 
MWR brightness temperatures were based on the Liebe and Layton (1987) 
water vapor and oxygen absorption model and the Grant (1957) liquid 
water absorption model.

Following the SHEBA experience, revised retrievals based on the more 
recent Rosenkranz (1998) water vapor and oxygen absorption models and 
the Liebe (1991) liquid waer absorption model were developed.  The 
Rosenkranz water vapor absorption model resulted a 2 percent increase 
in PWV relative to the earlier Liebe and Layton model.  The Liebe 
liquid water absorption model decreased the LWP by 10% relative to the 
Grant model.  However, the increased oxygen absorption caused a 
0.02-0.03 mm (20-30 g/m2) reduction in LWP, which was particularly 
significant for low LWP conditions (i.e. thin clouds encountered at 
SHEBA).

Recently, it has been shown (Liljegren, Boukabara, Cady-Pereira, and 
Clough, TGARS v. 43, pp 1102-1108, 2005) that the half-width of the 
22 GHz water vapor line from the HITRAN compilation, which is 5 percent 
smaller than the Liebe and Dillon (1969) half-width used in Rosenkranz 
(1998), provided a better fit to the microwave brightness temperature 
measurements at 5 frequencies in the range 22-30 GHz, and yielded more 
accurate retrievals. Accordingly, revised MWR retrieval coefficients 
have been developed using MONORTM, which utilizes the HITRAN compilation 
for its spectroscopic parameters.  These new retrievals provide 3 
percent less PWV and 2.6 percent greater LWP than the previous 
retrievals based on Rosenkranz (1998).

Although the MWR data will be reprocessed to apply the new monortm-based 
retrievals, for most purposes it will be sufficient to correct the data 
using the following factors:

PWV_MONORTM = 0.9695 * PWV_ROSENKRANZ
LWP_MONORTM = 1.026  * LWP_ROSENKRANZ

The Rosenkranz-based retrieval coefficients became active at NSA.C1 
20020425.1900.  The MONORTM-based retrieval coefficients became active 
at NSA.C1 20050629.0000.

Note: a reprocessing effort is already underway to apply the 
Rosenkranz-based retrieval coefficients to all MWR prior to April 
2002.  An additional reprocessing task will be undertaken to apply 
the MONORTM retrieval to all MWR data when the first is completed. 
Read reprocessing comments in the netcdf file header carefully to 
ensure you are aware which retrieval is in play.
Measurements:nsamwrlosC1.a1:
  • Mean total water vapor amount along LOS path(vap)
  • Mean total liquid water amount along LOS path(liq)

nsa5mwravgC1.c1:
  • Mean total water vapor amount along LOS path(vap)
  • Mean total liquid water amount along LOS path(liq)

nsaqmemwrcolC1.c1:
  • Ensemble average for MWR vapor in window centered about balloon release(mean_vap_mwr)
  • Ensemble average for MWR liquid in window centered about balloon release(mean_liq_mwr)

nsamwrlosC1.b1:
  • Mean total water vapor amount along LOS path(vap)
  • Mean total liquid water amount along LOS path(liq)

nsamwrtipC1.a1:
  • Total water vapor along zenith path using tip-derived brightness temperatures(vaptip)
  • Total liquid water along zenith path using tip-derived brightness temperatures(liqtip)


Back To Table of Contents

DQRID : D050928.3
Start DateStart TimeEnd DateEnd Time
09/16/2002182009/15/2005172
Subject:
NSA/MWR/C1 - New software version (4.15) installed
DataStreams:nsamwrlosC1.b1, nsamwrtipC1.a1
Description:
A problem began with the installation of MWR.EXE version 4.12 in September 2002. The 
software had been upgraded from a "DOS" to a "Windows"-compiled program to address an earlier 
problem.  The software upgrade corrected the earlier problem but introduced a new one 
that caused line-of-sight observing cycles to be skipped, a 15% reduction in the number of 
tip curves, and saturation of CPU usage.  Software versions 4.13 and 4.14 also produced 
these problems.

The new MWR software version (4.15) was installed on 9/15/2005. As a consequence of this 
upgrade, the tip curve frequency increased. The tip cycle time decreased from ~60s to ~50s.
Measurements:nsamwrlosC1.b1:
  • Blackbody kinetic temperature(tkbb)
  • 31.4 GHz Blackbody signal(bb31)
  • Mean total water vapor amount along LOS path(vap)
  • Noise injection temp at 31.4 GHz adjusted to tkbb(tnd31)
  • 23.8 GHz Blackbody signal(bb23)
  • 31.4 GHz blackbody+noise injection signal(bbn31)
  • Noise injection temp at 23.8 GHz adjusted to tkbb(tnd23)
  • 31.4 GHz sky signal(sky31)
  • Sky/Cloud Infra-Red Temperature(sky_ir_temp)
  • 23.8 GHz blackbody+noise injection signal(bbn23)
  • Mean total liquid water amount along LOS path(liq)
  • Mean 31.4 GHz sky brightness temperature(tbsky31)
  • Mixer kinetic (physical) temperature(tkxc)
  • Noise injection temp at nominal temperature at 23.8 GHz(tnd_nom23)
  • Noise diode mount temperature(tknd)
  • 23.8 GHz sky signal(sky23)
  • Noise injection temp at nominal temperature at 31.4 GHz(tnd_nom31)
  • Mean IR brightness temperature(ir_temp)
  • Mean 23.8 GHz sky brightness temperature(tbsky23)
  • Ambient temperature(tkair)
  • Temperature correction coefficient at 31.4 GHz(tc31)
  • Temperature correction coefficient at 23.8 GHz(tc23)

nsamwrtipC1.a1:
  • Noise injection temp at nominal temperature at 23.8 GHz(tnd_nom23)
  • Temperature correction coefficient at 31.4 GHz(tc31)
  • Noise diode mount temperature(tknd)
  • 23.8 GHz sky signal(tipsky23)
  • Noise injection temp at 23.8 GHz adjusted to tkbb(tnd23)
  • 31.4 GHz goodness-of-fit coefficient(r31)
  • Mixer kinetic (physical) temperature(tkxc)
  • 23.8 GHz sky brightness temperature derived from tip curve(tbskytip23)
  • Ambient temperature(tkair)
  • 31.4 GHz sky signal(tipsky31)
  • Noise injection temp at 23.8 GHz derived from this tip(tnd23I)
  • Noise injection temp at 31.4 GHz adjusted to tkbb(tnd31)
  • Total liquid water along zenith path using tip-derived brightness temperatures(liqtip)
  • Noise injection temp at 31.4 GHz derived from this tip(tnd31I)
  • Temperature correction coefficient at 23.8 GHz(tc23)
  • Noise injection temp at nominal temperature at 31.4 GHz(tnd_nom31)
  • 31.4 GHz Blackbody signal(bb31)
  • 23.8 GHz Blackbody signal(bb23)
  • 31.8 GHz sky brightness temperature derived from tip curve(tbskytip31)
  • 23.8 GHz goodness-of-fit coefficient(r23)
  • Total water vapor along zenith path using tip-derived brightness temperatures(vaptip)
  • Blackbody kinetic temperature(tkbb)
  • 31.4 GHz blackbody+noise injection signal(bbn31)
  • 23.8 GHz blackbody+noise injection signal(bbn23)


Back To Table of Contents

DQRID : D051025.2
Start DateStart TimeEnd DateEnd Time
10/31/20030009/14/20051420
Subject:
NSA/METTWR/C1 - Data 1-minute behind
DataStreams:nsamettwr4hC1.b1
Description:
Data from the Barometer, Chilled Mirror Hygrometer and the Present Weather Sensor were 
one-minute behind due to timing problems collecting data from the Serial Data Multiplexer 
that handled these sensors.
Measurements:nsamettwr4hC1.b1:
  • 15 minute Present Weather Code(PwCod15mi)
  • 1 minute Average Visibility(AvgVis1mi)
  • Chilled Mirror Dew Point(CMHDP)
  • Instant Present Weather Code(InstPwCod)
  • Chilled Mirror Calculated Saturation Vapor Pressure(SatVPCMH)
  • Chilled Mirror Calculated Relative Humidity(CMHRH)
  • Chilled Mirror Calculated Vapor Pressure(VPCMH)
  • 1 hour Present Weather Code(PwCod1hr)
  • Cumulative Snow Sum(CumSnow)
  • 10 minute Average Visibility(AvgVis10m)
  • Chilled Mirror Temperature(CMHTemp)
  • Precipitation Rate(PcpRate)
  • Cumulative Water Sum(CumH2O)
  • Present Weather Sensor Alarm(PWSAlarm)
  • Atmospheric Pressure(AtmPress)


Back To Table of Contents

DQRID : D051101.4
Start DateStart TimeEnd DateEnd Time
10/31/20030010/20/2005190
Subject:
NSA/METTWR/C1 - Reprocess: Wind direction data incorrect
DataStreams:nsamettwr4hC1.b1
Description:
Wind direction data is off by 30 degrees for all wind sensors.  The 40-m tower was 
misaligned to true north.
Measurements:nsamettwr4hC1.b1:
  • 40m Vector Averaged Wind Direction(WD40M_DU_WVT)
  • 2m Vector Averaged Wind Direction(WD2M_DU_WVT)
  • 20m Vector Averaged Wind Direction(WD20M_DU_WVT)
  • Sonic Vector Averaged Wind Direction(SonicWD_DU_WVT)
  • 10m Vector Averaged Wind Direction(WD10M_DU_WVT)


Back To Table of Contents



END OF DATA