Data Quality Reports for Session: 102739 User: sivaraman Completed: 11/16/2006


TABLE OF CONTENTS

DQR IDSubjectData Streams Affected
D030902.1SGP/MWR/C1 - no air temperature signalsgpmwrlosC1.b1, sgpmwrtipC1.a1
D041001.3SGP/MWR/C1 - Instrument problemsgpmwrlosC1.a1, sgpmwrlosC1.b1, sgpmwrtipC1.a1
D041014.1SGP/MWR/C1 - thermal instabilitysgpmwrlosC1.a1, sgpmwrlosC1.b1, sgpmwrtipC1.a1
D041117.2SGP/MWR/C1 - Reprocess: wrong retrievalssgpmwrlosC1.a1, sgpmwrlosC1.b1, sgpmwrtipC1.a1, sgpqmemwrcolC1.c1
D050722.1SGP/MWR/C1 - REPROCESS - Revised Retrieval CoefficientssgpmwrlosC1.a1, sgpmwrlosC1.b1, sgpmwrtipC1.a1, sgp1mwravgC1.c1, sgp5mwravgC1.c1,
sgpqmemwrcolC1.c1
D051011.6SGP/MWR/C1 - New software version (4.15) installedsgpmwrlosC1.b1, sgpmwrtipC1.a1


DQRID : D030902.1
Start DateStart TimeEnd DateEnd Time
08/22/2003211509/30/20041835
Subject:
SGP/MWR/C1 - no air temperature signal
DataStreams:sgpmwrlosC1.b1, sgpmwrtipC1.a1
Description:
When the new blower was upgraded by Radiometrics and reinstalled on the MWR, the air 
temperature sensor failed to properly report. It was determined that the wires carrying the 
signal to the analog board did not conform to the standard expected by the upgraded blower. 
The problem was corrected by changing the wiring.
Measurements:sgpmwrtipC1.a1:
  • Ambient temperature(tkair)

sgpmwrlosC1.b1:
  • Ambient temperature(tkair)


Back To Table of Contents

DQRID : D041001.3
Start DateStart TimeEnd DateEnd Time
09/21/2004211409/24/20041354
09/26/2004233209/27/20040317
09/27/2004121409/30/20041820
Subject:
SGP/MWR/C1 - Instrument problem
DataStreams:sgpmwrlosC1.a1, sgpmwrlosC1.b1, sgpmwrtipC1.a1
Description:
The MWR mixer temperature, blackbody temperature, and moisture flag are incorrect. This 
began when the instrument was returned to service after the analog board was temporarily 
removed to check the presence and absence of certain resistors. The board must have been 
accidently damaged during this process.
Measurements:sgpmwrtipC1.a1:
  • Noise injection temp at 23.8 GHz adjusted to tkbb(tnd23)
  • Noise diode mount temperature(tknd)
  • Noise injection temp at 23.8 GHz derived from this tip(tnd23I)
  • Water on Teflon window (1=WET, 0=DRY)(wet_window)
  • Noise injection temp at 31.4 GHz derived from this tip(tnd31I)
  • Temperature correction coefficient at 31.4 GHz(tc31)
  • Noise injection temp at 31.4 GHz adjusted to tkbb(tnd31)
  • Blackbody kinetic temperature(tkbb)
  • Noise injection temp at nominal temperature at 31.4 GHz(tnd_nom31)
  • Temperature correction coefficient at 23.8 GHz(tc23)
  • Ambient temperature(tkair)
  • Mixer kinetic (physical) temperature(tkxc)
  • Noise injection temp at nominal temperature at 23.8 GHz(tnd_nom23)

sgpmwrlosC1.b1:
  • Water on Teflon window (1=WET, 0=DRY)(wet_window)
  • Noise diode mount temperature(tknd)
  • Noise injection temp at nominal temperature at 31.4 GHz(tnd_nom31)
  • Noise injection temp at 23.8 GHz adjusted to tkbb(tnd23)
  • Noise injection temp at 31.4 GHz adjusted to tkbb(tnd31)
  • Noise injection temp at nominal temperature at 23.8 GHz(tnd_nom23)
  • Temperature correction coefficient at 31.4 GHz(tc31)
  • Blackbody kinetic temperature(tkbb)
  • Ambient temperature(tkair)
  • Mixer kinetic (physical) temperature(tkxc)
  • Temperature correction coefficient at 23.8 GHz(tc23)

sgpmwrlosC1.a1:
  • Water on Teflon window (1=WET, 0=DRY)(wet_window)
  • Noise injection temp at 31.4 GHz adjusted to tkbb(tnd31)
  • Temperature correction coefficient at 31.4 GHz(tc31)
  • Blackbody kinetic temperature(tkbb)
  • Temperature correction coefficient at 23.8 GHz(tc23)
  • Noise injection temp at 23.8 GHz adjusted to tkbb(tnd23)
  • Noise injection temp at nominal temperature at 31.4 GHz(tnd_nom31)
  • Noise diode mount temperature(tknd)
  • Ambient temperature(tkair)
  • Noise injection temp at nominal temperature at 23.8 GHz(tnd_nom23)
  • Mixer kinetic (physical) temperature(tkxc)


Back To Table of Contents

DQRID : D041014.1
Start DateStart TimeEnd DateEnd Time
09/30/2004183510/13/20042118
Subject:
SGP/MWR/C1 - thermal instability
DataStreams:sgpmwrlosC1.a1, sgpmwrlosC1.b1, sgpmwrtipC1.a1
Description:
The analog board was replaced with a spare (D041001.3) with a reference temperature that 
was set too low (306 K) so that during periods of high ambient temperature, the instrument 
became thermally unstable. The problem was corrected when the temperature setting was 
increased (to 311 K).
Measurements:sgpmwrtipC1.a1:
  • 31.4 GHz sky brightness temperature derived from tip curve(tbsky31tip)
  • 23.8 GHz sky brightness temperature derived from tip curve(tbsky23tip)
  • Total liquid water along zenith path using tip-derived brightness temperatures(liqtip)
  • Total water vapor along zenith path using tip-derived brightness temperatures(vaptip)

sgpmwrlosC1.b1:
  • Mean 31.4 GHz sky brightness temperature(tbsky31)
  • Mean total water vapor amount along LOS path(vap)
  • Mean 23.8 GHz sky brightness temperature(tbsky23)
  • Mean total liquid water amount along LOS path(liq)

sgpmwrlosC1.a1:
  • Mean total liquid water amount along LOS path(liq)
  • Mean total water vapor amount along LOS path(vap)
  • Mean 31.4 GHz sky brightness temperature(tbsky31)
  • Mean 23.8 GHz sky brightness temperature(tbsky23)


Back To Table of Contents

DQRID : D041117.2
Start DateStart TimeEnd DateEnd Time
09/21/2004164311/11/20042100
Subject:
SGP/MWR/C1 - Reprocess: wrong retrievals
DataStreams:sgpmwrlosC1.a1, sgpmwrlosC1.b1, sgpmwrtipC1.a1, sgpqmemwrcolC1.c1
Description:
When the computer and core configuration were upgraded, retrieval coefficients for BF1 
were accidently included in the configuration file.
The correct coefficients for CF1 were applied when the configuration file was updated.
Measurements:sgpmwrtipC1.a1:
  • Total liquid water along zenith path using tip-derived brightness temperatures(liqtip)
  • Total water vapor along zenith path using tip-derived brightness temperatures(vaptip)

sgpmwrlosC1.b1:
  • Mean total water vapor amount along LOS path(vap)
  • Mean total liquid water amount along LOS path(liq)

sgpqmemwrcolC1.c1:
  • Ensemble average for MWR vapor in window centered about balloon release(mean_vap_mwr)
  • Ensemble average for MWR liquid in window centered about balloon release(mean_liq_mwr)

sgpmwrlosC1.a1:
  • Mean total liquid water amount along LOS path(liq)
  • Mean total water vapor amount along LOS path(vap)


Back To Table of Contents

DQRID : D050722.1
Start DateStart TimeEnd DateEnd Time
04/16/2002200006/28/20052300
Subject:
SGP/MWR/C1 - REPROCESS - Revised Retrieval Coefficients
DataStreams:sgpmwrlosC1.a1, sgpmwrlosC1.b1, sgpmwrtipC1.a1, sgp1mwravgC1.c1, sgp5mwravgC1.c1,
sgpqmemwrcolC1.c1
Description:
IN THE BEGINNING (June 1992), the retrieval coefficients used to derive the precipitable 
water vapor (PWV) and liquid water path (LWP) from the MWR brightness temperatures were 
based on the Liebe and Layton (1987) water vapor and oxygen absorption model and the Grant 
(1957) liquid water absorption model.  

Following the SHEBA experience, revised retrievals based on the more recent Rosenkranz 
(1998) water vapor and oxygen absorption models and the Liebe (1991) liquid waer absorption 
model were developed.  The Rosenkranz water vapor absorption model resulted a 2 percent 
increase in PWV relative to the earlier Liebe and Layton model.  The Liebe liquid water 
absorption model decreased the LWP by 10% relative to the Grant model.  However, the 
increased oxygen absorption caused a 0.02-0.03 mm (20-30 g/m2) reduction in LWP, which was 
particularly significant for low LWP conditions (i.e. thin clouds encountered at SHEBA).

Recently, it has been shown (Liljegren, Boukabara, Cady-Pereira, and Clough, TGARS v. 43, 
pp 1102-1108, 2005) that the half-width of the 22 GHz water vapor line from the HITRAN 
compilation, which is 5 percent smaller than the Liebe and Dillon (1969) half-width used in 
Rosenkranz (1998), provided a better fit to the microwave brightness temperature 
measurements at 5 frequencies in the range 22-30 GHz, and yielded more accurate retrievals.  
Accordingly, revised MWR retrieval coefficients have been developed using MONORTM, which 
utilizes the HITRAN compilation for its spectroscopic parameters.  These new retrievals 
provide 3 percent less PWV and 2.6 percent greater LWP than the previous retrievals based on 
Rosenkranz (1998).

Although the MWR data will be reprocessed to apply the new monortm-based retrievals, for 
most purposes it will be sufficient to correct the data using the following factors:

PWV_MONORTM = 0.9695 * PWV_ROSENKRANZ
LWP_MONORTM = 1.026  * LWP_ROSENKRANZ

The Rosenkranz-based retrieval coefficients became active as follows (BCR 456):
SGP/C1 (Lamont)     4/16/2002, 2000
SGP/B1 (Hillsboro)  4/12/2002, 1600
SGP/B4 (Vici)       4/15/2002, 2300
SGP/B5 (Morris)     4/15/2002, 2300
SGP/B6 (Purcell)    4/16/2002, 2200
SGP/E14(Lamont)     4/16/2002, 0000
NSA/C1 (Barrow)     4/25/2002, 1900 
NSA/C2 (Atqasuk)    4/18/2002, 1700
TWP/C1 (Manus)      5/04/2002, 0200
TWP/C2 (Nauru)      4/27/2002, 0600
TWP/C3 (Darwin)     inception

The MONORTM-based retrieval coefficients became active as follows (BCR 984):

SGP/C1 (Lamont)     6/28/2005, 2300
SGP/B1 (Hillsboro)  6/24/2005, 2100
SGP/B4 (Vici)       6/24/2005, 2100
SGP/B5 (Morris)     6/24/2005, 2100
SGP/B6 (Purcell)    6/24/2005, 1942
SGP/E14(Lamont)     6/28/2005, 2300
NSA/C1 (Barrow)     6/29/2005, 0000 
NSA/C2 (Atqasuk)    6/29/2005, 0000
TWP/C1 (Manus)      6/30/2005, 2100
TWP/C2 (Nauru)      6/30/2005, 2100
TWP/C3 (Darwin)     6/30/2005, 2100
PYE/M1 (Pt. Reyes)  4/08/2005, 1900**

** At Pt. Reyes, the original retrieval coefficients implemented in March 2005 were based 
on a version of the Rosenkranz model that had been modified to use the HITRAN half-width 
at 22 GHz and to be consistent with the water vapor continuum in MONORTM.  These 
retrievals yield nearly identical results to the MONORTM retrievals.  Therefore the Pt. Reyes 
data prior to 4/08/2005 may not require reprocessing.
Measurements:sgpmwrtipC1.a1:
  • Total liquid water along zenith path using tip-derived brightness temperatures(liqtip)
  • Total water vapor along zenith path using tip-derived brightness temperatures(vaptip)

sgp5mwravgC1.c1:
  • Mean total water vapor amount along LOS path(vap)
  • Mean total liquid water amount along LOS path(liq)

sgpmwrlosC1.b1:
  • Mean total water vapor amount along LOS path(vap)
  • Mean total liquid water amount along LOS path(liq)

sgp1mwravgC1.c1:
  • Mean total liquid water amount along LOS path(liq)
  • Mean total water vapor amount along LOS path(vap)

sgpqmemwrcolC1.c1:
  • Ensemble average for MWR vapor in window centered about balloon release(mean_vap_mwr)
  • Ensemble average for MWR liquid in window centered about balloon release(mean_liq_mwr)

sgpmwrlosC1.a1:
  • Mean total liquid water amount along LOS path(liq)
  • Mean total water vapor amount along LOS path(vap)


Back To Table of Contents

DQRID : D051011.6
Start DateStart TimeEnd DateEnd Time
07/31/2002202708/04/20051959
Subject:
SGP/MWR/C1 - New software version (4.15) installed
DataStreams:sgpmwrlosC1.b1, sgpmwrtipC1.a1
Description:
A problem began with the installation of MWR.EXE version 4.12 in July 2002. The software 
had been upgraded from a "DOS" to a "Windows"-compiled program to address an earlier 
problem.  The software upgrade corrected the earlier problem but introduced a new one that 
caused line-of-sight observing cycles to be skipped, a 15% reduction in the number of tip 
curves, and saturation of CPU usage. Software versions 4.13 and 4.14 also produced these 
problems.

The new MWR software, version 4.15, was installed on 08/04/2005. As a consequence of this 
upgrade, the tip curve frequency increased. The tip cycle time decreased from ~60s to 
~50s.
Measurements:sgpmwrtipC1.a1:
  • 31.4 GHz blackbody+noise injection signal(bbn31)
  • Noise injection temp at 23.8 GHz adjusted to tkbb(tnd23)
  • 31.4 GHz Blackbody signal(bb31)
  • Noise injection temp at 23.8 GHz derived from this tip(tnd23I)
  • Noise diode mount temperature(tknd)
  • 31.4 GHz sky signal(tipsky31)
  • Noise injection temp at 31.4 GHz derived from this tip(tnd31I)
  • Total liquid water along zenith path using tip-derived brightness temperatures(liqtip)
  • Temperature correction coefficient at 31.4 GHz(tc31)
  • Noise injection temp at 31.4 GHz adjusted to tkbb(tnd31)
  • 23.8 GHz Blackbody signal(bb23)
  • Blackbody kinetic temperature(tkbb)
  • Noise injection temp at nominal temperature at 31.4 GHz(tnd_nom31)
  • 23.8 GHz sky signal(tipsky23)
  • Ambient temperature(tkair)
  • Temperature correction coefficient at 23.8 GHz(tc23)
  • Total water vapor along zenith path using tip-derived brightness temperatures(vaptip)
  • Mixer kinetic (physical) temperature(tkxc)
  • Noise injection temp at nominal temperature at 23.8 GHz(tnd_nom23)
  • 23.8 GHz blackbody+noise injection signal(bbn23)
  • 31.4 GHz sky brightness temperature derived from tip curve(tbsky31tip)
  • 31.4 GHz goodness-of-fit coefficient(r31)
  • 23.8 GHz sky brightness temperature derived from tip curve(tbsky23tip)
  • 23.8 GHz goodness-of-fit coefficient(r23)

sgpmwrlosC1.b1:
  • 31.4 GHz sky signal(sky31)
  • Noise diode mount temperature(tknd)
  • 31.4 GHz blackbody+noise injection signal(bbn31)
  • Noise injection temp at nominal temperature at 31.4 GHz(tnd_nom31)
  • Noise injection temp at 23.8 GHz adjusted to tkbb(tnd23)
  • 23.8 GHz sky signal(sky23)
  • Mean 31.4 GHz sky brightness temperature(tbsky31)
  • 23.8 GHz blackbody+noise injection signal(bbn23)
  • Noise injection temp at 31.4 GHz adjusted to tkbb(tnd31)
  • Mean total liquid water amount along LOS path(liq)
  • Noise injection temp at nominal temperature at 23.8 GHz(tnd_nom23)
  • 31.4 GHz Blackbody signal(bb31)
  • Temperature correction coefficient at 31.4 GHz(tc31)
  • Blackbody kinetic temperature(tkbb)
  • Sky/Cloud Infra-Red Temperature(sky_ir_temp)
  • Mean total water vapor amount along LOS path(vap)
  • Ambient temperature(tkair)
  • 23.8 GHz Blackbody signal(bb23)
  • Mean 23.8 GHz sky brightness temperature(tbsky23)
  • Mixer kinetic (physical) temperature(tkxc)
  • Temperature correction coefficient at 23.8 GHz(tc23)


Back To Table of Contents



END OF DATA