Data Quality Reports for Session: 103095 User: cyliu Completed: 12/07/2006


TABLE OF CONTENTS

DQR IDSubjectData Streams Affected
D010423.1SGP/SIRS/C1 - Diffuse Pyranometer Thermal OffsetssgpsirsC1.a0, sgpsirsC1.a1
D030312.10SGP/MWR/C1 - Intermittent Negative Sky Brightness TemperaturessgpmwrlosC1.a1, sgpmwrlosC1.b1, sgp1mwravgC1.c1, sgp5mwravgC1.c1
D050502.2SGP/SIRS/C1 - SWFANAL Data description errorsgp1swfanalsirs1longC1.c1, sgp15swfanalsirs1longC1.c1


DQRID : D010423.1
Start DateStart TimeEnd DateEnd Time
03/21/1997164802/22/20012050
Subject:
SGP/SIRS/C1 - Diffuse Pyranometer Thermal Offsets
DataStreams:sgpsirsC1.a0, sgpsirsC1.a1
Description:
Broadband downwelling shortwave diffuse (sky) irradiance measurements available from SIRS
during the period of this Data Quality Report (DQR), require adjustment for thermal
offsets.  These thermal, or ?zero? offsets refer to the generally reduced output signals
from a shaded pyranometer due to the exchange of longwave (infrared) irradiance between
the single black thermopile detector, the protective glass domes surrounding the
detector, and the atmosphere. Originally considered an acceptable nighttime response of
thermopile-type pyranometers, the generally negative bias is now recognized to
significantly effect the accuracy of SIRS diffuse irradiance data during daylight
periods.

Studies of the Eppley Laboratory, Inc. Model PSP (Precision Spectral Pyranometer), used
for the SIRS   measurements of diffuse irradiance, suggest the thermal offset correction
can range from near 0 to as much as 30 Watts per square meter, depending on the
coincident net longwave, or infrared irradiance [1, 2].  Under very clear-sky conditions,
the diffuse irradiance from a shaded PSP can be less than the minimum physical limit
defined by radiative transfer model estimates based only on Rayleigh scattering effects.

A correction method has been developed for adjusting SIRS diffuse irradiance data [3]. 
The resulting Value Added Product (VAP) will be applied to SIRS data for the period of
this DQR.  The VAP will not be applied to SIROS data collected before the instrument
platform was converted to SIRS.

Additionally, the Model PSP radiometer has been replaced by a Model 8-48 which uses a
black and white thermopile detector known to reduce the thermal offset errors to less
than 2 Watts per square meter [3].  The radiometer replacement at this SIRS location was
completed on the ending date of this DQR.

References:
1. Gulbrandsen, A., 1978:  On the use of pyranometers in the study of spectral solar
radiation and atmospheric aerosols.  J. Appl. Meteorol., 17, 899-904.
2. Cess, R. D., X. Jing, T. Qian, and M. Sun, 1999:  Validation strategies applied to the
measurement of total, direct and diffuse shortwave radiation at the surface.  J. Geophys.
Res.
3. Dutton, E.G., J. Michalsky, T. Stoffel, B. Forgan, J. Hickey, D. Nelson, T. Alberta,
and I. Reda, 2001:  Measurement of Broadband Diffuse Solar Irradiance Using Current
Commercial Instrumentation With a Correction for Thermal Offset Errors. J. Atmos. Oceanic
Tech.   Vol 18, No. 3, 297-314.   (March 2001)
Measurements:sgpsirsC1.a0:
  • Shaded pyranometer voltage(short_diffuse)

sgpsirsC1.a1:
  • Downwelling Shortwave Diffuse Hemispheric Irradiance, Ventilated Pyranometer(down_short_diffuse_hemisp)
  • Downwelling Shortwave Diffuse Hemispheric Irradiance, Ventilated Pyranometer,
    Standard Deviation(down_short_diffuse_hemisp_std)
  • Downwelling Shortwave Diffuse Hemispheric Irradiance, Ventilated Pyranometer,
    Maxima(down_short_diffuse_hemisp_max)
  • Downwelling Shortwave Diffuse Hemispheric Irradiance, Ventilated Pyranometer,
    Minima(down_short_diffuse_hemisp_min)


Back To Table of Contents

DQRID : D030312.10
Start DateStart TimeEnd DateEnd Time
11/17/1999180007/31/20022034
Subject:
SGP/MWR/C1 - Intermittent Negative Sky Brightness Temperatures
DataStreams:sgpmwrlosC1.a1, sgpmwrlosC1.b1, sgp1mwravgC1.c1, sgp5mwravgC1.c1
Description:
Several related and recurring problems with the SGP MWRs have been
reported dating back to 1999.  These problems were due to the
occurrence of blackbody signals (in counts) that were half of those
expected. The symptoms included noisy data (especially at Purcell),
spikes in the data (especially at Vici), negative brightness
temperatures, and apparent loss of serial communication between the
computer and the radiometer, which results in a self-termination of the
MWR program (especially at the CF).

Because these all initially appeared to be hardware-related problems,
the instrument mentor and SGP site operations personnel (1) repeatedly
cleaned and replaced the fiber optic comm. components, (2) swapped
radiometers, (3) sent radiometers back to Radiometrics for evaluation
(which has not revealed any instrument problems), and (4) reconfigured
the computer's operating system.  Despite several attempts to isolate
and correct it, the problem persisted.

It became apparent that some component of the Windows98 configuration
conflicted with the DOS-based MWR program or affected the serial port
or the contents of the serial port buffer. This problem was finally
corrected by upgrading the MWR software with a new Windows-compatible
program.
Measurements:sgp5mwravgC1.c1:
  • Mean total liquid water amount along LOS path(liq)
  • Mean 23.8 GHz sky brightness temperature(tbsky23)
  • Mean total water vapor amount along LOS path(vap)
  • Mean 31.4 GHz sky brightness temperature(tbsky31)

sgpmwrlosC1.b1:
  • Mean 31.4 GHz sky brightness temperature(tbsky31)
  • Mean total liquid water amount along LOS path(liq)
  • Mean total water vapor amount along LOS path(vap)
  • Mean 23.8 GHz sky brightness temperature(tbsky23)

sgp1mwravgC1.c1:
  • Mean 23.8 GHz sky brightness temperature(tbsky23)
  • Mean total liquid water amount along LOS path(liq)
  • Mean total water vapor amount along LOS path(vap)
  • Mean 31.4 GHz sky brightness temperature(tbsky31)

sgpmwrlosC1.a1:
  • Mean total water vapor amount along LOS path(vap)
  • Mean 23.8 GHz sky brightness temperature(tbsky23)
  • Mean 31.4 GHz sky brightness temperature(tbsky31)
  • Mean total liquid water amount along LOS path(liq)


Back To Table of Contents

DQRID : D050502.2
Start DateStart TimeEnd DateEnd Time
03/25/1997000012/10/20032359
Subject:
SGP/SIRS/C1 - SWFANAL Data description error
DataStreams:sgp1swfanalsirs1longC1.c1, sgp15swfanalsirs1longC1.c1
Description:
The long name attribute for the cloud effect fields incorrectly
defines the cloud effect to be the difference between the 
clearskyfit and measured values:

"Difference: ***fluxdn_clearskyfit - ***fluxdn_measured (***fcg)" ;

The cloud effects are correctly calculated by subtracting the 
irradiance calculated in the clear sky fit from the measured 
irradiance.

"Difference: ***fluxdn_measured - ***fluxdn_clearskyfit (***fcg)" ;

NOTE: this is just a documentation error.  The data are correctly
calculated.
Measurements:sgp1swfanalsirs1longC1.c1:
  • Difference: difswfluxdn_measured - difswfluxdn_clearskyfit (diffcg)(difswfluxdn_cloudeffect)
  • Difference: sswfluxdn_measured - sswfluxdn_clearskyfit (sswfcg)(sswfluxdn_cloudeffect)
  • Difference: gswfluxdn_measured - gswfluxdn_clearskyfit (gswfcg)(gswfluxdn_cloudeffect)

sgp15swfanalsirs1longC1.c1:
  • Difference: difswfluxdn_measured - difswfluxdn_clearskyfit (diffcg)(difswfluxdn_cloudeffect)
  • Difference: sswfluxdn_measured - sswfluxdn_clearskyfit (sswfcg)(sswfluxdn_cloudeffect)
  • Difference: gswfluxdn_measured - gswfluxdn_clearskyfit (gswfcg)(gswfluxdn_cloudeffect)


Back To Table of Contents



END OF DATA