Data Quality Reports for Session: 103638 User: gnk Completed: 01/10/2007


TABLE OF CONTENTS

DQR IDSubjectData Streams Affected
D060906.1NIM/MFRSR/S1 - Shading problemnimmfrsrS1.a0, nimmfrsrS1.b1
D061006.1NIM/SKYRAD/M1 - Tracker inoperativenimskyradM1.00, nimskyrad20sM1.a0, nimskyrad60sM1.b1
D061107.1NIM/MFRSR/M1 - Shading problemnimmfrsrM1.00, nimmfrsrM1.a0, nimmfrsrM1.b1
D061117.1NIM/MWRP/M1 - Reprocess: K-band calibration driftnimmwrpM1.b1


DQRID : D060906.1
Start DateStart TimeEnd DateEnd Time
07/01/2006000010/25/20062359
Subject:
NIM/MFRSR/S1 - Shading problem
DataStreams:nimmfrsrS1.a0, nimmfrsrS1.b1
Description:
A shading problem was first noticed in Aug data.  Subsequent careful examination of prior 
data indicate it may have begun in early July.  Because of the near constant dusty 
conditions, it is difficult to determine exactly when it started.  As such a loose start date 
of 7/1/2006 is given to this DQR.  There is reasonable evidence of shading issues in the 
second half of July.  The hours in question are between 1430 and 1700 UTC.  Mentor 
suggests avoiding data during these hours.  Maintenance on 10/25 resolved the problem.
Measurements:nimmfrsrS1.a0:
  • Narrowband Diffuse Hemispheric Irradiance, Filter 5, offset and cosine corrected(diffuse_hemisp_narrowband_filter5)
  • Direct Normal Broadband Irradiance, cosine corrected, broadband scale applied(direct_normal_broadband)
  • Narrowband Diffuse Hemispheric Irradiance, Filter 4, offset and cosine corrected(diffuse_hemisp_narrowband_filter4)
  • Diffuse Hemispheric Broadband Irradiance, offset subtracted, cosine corrected,
    broadband scale applied(diffuse_hemisp_broadband)
  • Narrowband Direct Normal Irradiance, Filter 3, cosine corrected(direct_normal_narrowband_filter3)
  • Narrowband Direct Normal Irradiance, Filter 1, cosine corrected(direct_normal_narrowband_filter1)
  • Narrowband Diffuse Hemispheric Irradiance, Filter 2, offset and cosine corrected(diffuse_hemisp_narrowband_filter2)
  • Narrowband Direct Normal Irradiance, Filter 5, cosine corrected(direct_normal_narrowband_filter5)
  • Narrowband Direct Normal Irradiance, Filter 6, cosine corrected(direct_normal_narrowband_filter6)
  • Narrowband Diffuse Hemispheric Irradiance, Filter 1, offset and cosine corrected(diffuse_hemisp_narrowband_filter1)
  • Narrowband Direct Normal Irradiance, Filter 2, cosine corrected(direct_normal_narrowband_filter2)
  • Narrowband Diffuse Hemispheric Irradiance, Filter 6, offset and cosine corrected(diffuse_hemisp_narrowband_filter6)
  • Narrowband Direct Normal Irradiance, Filter 4, cosine corrected(direct_normal_narrowband_filter4)
  • Narrowband Diffuse Hemispheric Irradiance, Filter 3, offset and cosine corrected(diffuse_hemisp_narrowband_filter3)

nimmfrsrS1.b1:
  • Narrowband Direct Normal Irradiance, Filter 4, cosine corrected(direct_normal_narrowband_filter4)
  • Narrowband Hemispheric Irradiance, Filter 4, offset and cosine corrected(hemisp_narrowband_filter4)
  • Narrowband Diffuse Hemispheric Irradiance, Filter 5, offset and cosine corrected(diffuse_hemisp_narrowband_filter5)
  • Narrowband Direct Normal Irradiance, Filter 2, cosine corrected(direct_normal_narrowband_filter2)
  • Narrowband Direct Normal Irradiance, Filter 3, cosine corrected(direct_normal_narrowband_filter3)
  • Narrowband Direct Normal Irradiance, Filter 1, cosine corrected(direct_normal_narrowband_filter1)
  • Narrowband Hemispheric Irradiance, Filter 6, offset and cosine corrected(hemisp_narrowband_filter6)
  • Narrowband Hemispheric Irradiance, Filter 5, offset and cosine corrected(hemisp_narrowband_filter5)
  • Hemispheric Broadband Irradiance, offset and cosine corrected, broadband scale
    factor applied(hemisp_broadband)
  • Narrowband Direct Normal Irradiance, Filter 5, cosine corrected(direct_normal_narrowband_filter5)
  • Narrowband Diffuse Hemispheric Irradiance, Filter 6, offset and cosine corrected(diffuse_hemisp_narrowband_filter6)
  • Narrowband Hemispheric Irradiance, Filter 3, offset and cosine corrected(hemisp_narrowband_filter3)
  • Narrowband Diffuse Hemispheric Irradiance, Filter 4, offset and cosine corrected(diffuse_hemisp_narrowband_filter4)
  • Narrowband Diffuse Hemispheric Irradiance, Filter 1, offset and cosine corrected(diffuse_hemisp_narrowband_filter1)
  • Narrowband Diffuse Hemispheric Irradiance, Filter 2, offset and cosine corrected(diffuse_hemisp_narrowband_filter2)
  • Narrowband Hemispheric Irradiance, Filter 1, offset and cosine corrected(hemisp_narrowband_filter1)
  • Narrowband Direct Normal Irradiance, Filter 6, cosine corrected(direct_normal_narrowband_filter6)
  • Narrowband Diffuse Hemispheric Irradiance, Filter 3, offset and cosine corrected(diffuse_hemisp_narrowband_filter3)
  • Direct Normal Broadband Irradiance, cosine corrected, broadband scale applied(direct_normal_broadband)
  • Diffuse Hemispheric Broadband Irradiance, offset subtracted, cosine corrected,
    broadband scale applied(diffuse_hemisp_broadband)
  • Narrowband Hemispheric Irradiance, Filter 2, offset and cosine corrected(hemisp_narrowband_filter2)


Back To Table of Contents

DQRID : D061006.1
Start DateStart TimeEnd DateEnd Time
09/12/2006120010/05/20061330
Subject:
NIM/SKYRAD/M1 - Tracker inoperative
DataStreams:nimskyradM1.00, nimskyrad20sM1.a0, nimskyrad60sM1.b1
Description:
Starting on 9/12 the NIM radiometer tracker drifted enough due to sinking supports and a 
drifting clock that the direct normal measurments (NIP) and the downwelling hemispheric 
diffuse shortwave measurments (8-48) were adversely affected in the afternoon hours.  The 
shortwave hemispheric global instrument (PSP) and downelling hemispheric longwave shaded1 
and shaded2 (PIR) are unaffected by this problem. 

The tracker problem greatly affected direct measurements and affected the diffuse 
measurement to a lesser extent. There are no redundant measurements for these instruments.  
However, during this time range the data collected before local noon (aprox 1140GMT) for all 
shortwave Skyrad instruments appear to be good.
Measurements:nimskyrad20sM1.a0:
  • Instantaneous Direct Normal Shortwave Irradiance, Pyrheliometer Thermopile
    Voltage(inst_direct_normal)
  • Instantaneous Uncorrected Downwelling Shortwave Diffuse, Shaded Pyranometer
    Thermopile Voltage(inst_diffuse)

nimskyrad60sM1.b1:
  • Shortwave Direct Normal Irradiance, Pyrheliometer(short_direct_normal)
  • Downwelling Shortwave Diffuse Hemispheric Irradiance, Ventilated Pyranometer,
    Standard Deviation(down_short_diffuse_hemisp_std)
  • Shortwave Direct Normal Irradiance, Pyrheliometer, Maxima(short_direct_normal_max)
  • Shortwave Direct Normal Irradiance, Pyrheliometer, Standard Deviation(short_direct_normal_std)
  • Shortwave Direct Normal Irradiance, Pyrheliometer, Minima(short_direct_normal_min)
  • Downwelling Shortwave Diffuse Hemispheric Irradiance, Ventilated Pyranometer(down_short_diffuse_hemisp)
  • Downwelling Shortwave Diffuse Hemispheric Irradiance, Ventilated Pyranometer,
    Maxima(down_short_diffuse_hemisp_max)
  • Downwelling Shortwave Diffuse Hemispheric Irradiance, Ventilated Pyranometer,
    Minima(down_short_diffuse_hemisp_min)

nimskyradM1.00:
  • Raw data stream - documentation not supported(Raw data stream - documentation not supported)


Back To Table of Contents

DQRID : D061107.1
Start DateStart TimeEnd DateEnd Time
10/01/2006000011/27/20061200
Subject:
NIM/MFRSR/M1 - Shading problem
DataStreams:nimmfrsrM1.00, nimmfrsrM1.a0, nimmfrsrM1.b1
Description:
The start time for this shading problem is very loose.  Due to the near constant dusty 
conditions, it is very difficult to ascertain exactly when a shading problem begins.  There 
are subtle hints of it in early to mid Oct, but it isn't until the end of the month when 
we can say with some certainty that there is a shading issue.  Maintenance on 11/27/2006 
resolved the problem.
Measurements:nimmfrsrM1.00:
  • Raw data stream - documentation not supported(Raw data stream - documentation not supported)

nimmfrsrM1.a0:
  • Narrowband Diffuse Hemispheric Irradiance, Filter 6, offset and cosine corrected(diffuse_hemisp_narrowband_filter6)
  • Direct Normal Broadband Irradiance, cosine corrected, broadband scale applied(direct_normal_broadband)
  • Narrowband Direct Normal Irradiance, Filter 2, cosine corrected(direct_normal_narrowband_filter2)
  • Narrowband Diffuse Hemispheric Irradiance, Filter 4, offset and cosine corrected(diffuse_hemisp_narrowband_filter4)
  • Narrowband Diffuse Hemispheric Irradiance, Filter 3, offset and cosine corrected(diffuse_hemisp_narrowband_filter3)
  • Narrowband Direct Normal Irradiance, Filter 4, cosine corrected(direct_normal_narrowband_filter4)
  • Diffuse Hemispheric Broadband Irradiance, offset subtracted, cosine corrected,
    broadband scale applied(diffuse_hemisp_broadband)
  • Narrowband Direct Normal Irradiance, Filter 5, cosine corrected(direct_normal_narrowband_filter5)
  • Narrowband Direct Normal Irradiance, Filter 3, cosine corrected(direct_normal_narrowband_filter3)
  • Narrowband Diffuse Hemispheric Irradiance, Filter 1, offset and cosine corrected(diffuse_hemisp_narrowband_filter1)
  • Narrowband Direct Normal Irradiance, Filter 6, cosine corrected(direct_normal_narrowband_filter6)
  • Narrowband Direct Normal Irradiance, Filter 1, cosine corrected(direct_normal_narrowband_filter1)
  • Narrowband Diffuse Hemispheric Irradiance, Filter 5, offset and cosine corrected(diffuse_hemisp_narrowband_filter5)
  • Narrowband Diffuse Hemispheric Irradiance, Filter 2, offset and cosine corrected(diffuse_hemisp_narrowband_filter2)

nimmfrsrM1.b1:
  • Narrowband Diffuse Hemispheric Irradiance, Filter 4, offset and cosine corrected(diffuse_hemisp_narrowband_filter4)
  • Hemispheric Broadband Irradiance, offset and cosine corrected, broadband scale
    factor applied(hemisp_broadband)
  • Narrowband Direct Normal Irradiance, Filter 3, cosine corrected(direct_normal_narrowband_filter3)
  • Narrowband Hemispheric Irradiance, Filter 4, offset and cosine corrected(hemisp_narrowband_filter4)
  • Narrowband Diffuse Hemispheric Irradiance, Filter 6, offset and cosine corrected(diffuse_hemisp_narrowband_filter6)
  • Narrowband Hemispheric Irradiance, Filter 2, offset and cosine corrected(hemisp_narrowband_filter2)
  • Narrowband Hemispheric Irradiance, Filter 5, offset and cosine corrected(hemisp_narrowband_filter5)
  • Narrowband Diffuse Hemispheric Irradiance, Filter 2, offset and cosine corrected(diffuse_hemisp_narrowband_filter2)
  • Narrowband Direct Normal Irradiance, Filter 1, cosine corrected(direct_normal_narrowband_filter1)
  • Narrowband Hemispheric Irradiance, Filter 6, offset and cosine corrected(hemisp_narrowband_filter6)
  • Narrowband Diffuse Hemispheric Irradiance, Filter 5, offset and cosine corrected(diffuse_hemisp_narrowband_filter5)
  • Narrowband Hemispheric Irradiance, Filter 3, offset and cosine corrected(hemisp_narrowband_filter3)
  • Narrowband Direct Normal Irradiance, Filter 2, cosine corrected(direct_normal_narrowband_filter2)
  • Diffuse Hemispheric Broadband Irradiance, offset subtracted, cosine corrected,
    broadband scale applied(diffuse_hemisp_broadband)
  • Direct Normal Broadband Irradiance, cosine corrected, broadband scale applied(direct_normal_broadband)
  • Narrowband Hemispheric Irradiance, Filter 1, offset and cosine corrected(hemisp_narrowband_filter1)
  • Narrowband Direct Normal Irradiance, Filter 4, cosine corrected(direct_normal_narrowband_filter4)
  • Narrowband Diffuse Hemispheric Irradiance, Filter 1, offset and cosine corrected(diffuse_hemisp_narrowband_filter1)
  • Narrowband Direct Normal Irradiance, Filter 6, cosine corrected(direct_normal_narrowband_filter6)
  • Narrowband Diffuse Hemispheric Irradiance, Filter 3, offset and cosine corrected(diffuse_hemisp_narrowband_filter3)
  • Narrowband Direct Normal Irradiance, Filter 5, cosine corrected(direct_normal_narrowband_filter5)


Back To Table of Contents

DQRID : D061117.1
Start DateStart TimeEnd DateEnd Time
10/01/2006000011/17/20061713
Subject:
NIM/MWRP/M1 - Reprocess: K-band calibration drift
DataStreams:nimmwrpM1.b1
Description:
During October and November there was a drift in the K-Band calibration of the MWRP. This 
resulted in brightness temperatures that are too high. New calibration coefficients were 
derived from the median value of the noise diode temperature for the months of October 
and November.
Measurements:nimmwrpM1.b1:
  • Retrieved liquid water path using only 23.835 and 30.0 GHz(liquidWaterPath2)
  • Retrieved liquid water path(liquidWaterPath)
  • Retrieved total precipitable water vapor using only 23.835 and 30.0 GHz(totalPrecipitableWater2)
  • Microwave brightness temperature(brightnessTemperature)
  • Retrieved cloud liquid water content(liquidWaterContent)
  • Retrieved total precipitable water vapor(totalPrecipitableWater)


Back To Table of Contents



END OF DATA