Data Quality Reports for Session: 104307 User: egutmann Completed: 02/15/2007


TABLE OF CONTENTS

DQR IDSubjectData Streams Affected
D031211.5SGP/EBBR/E20 - Pressure Sensor Data Incorrectsgp5ebbrE20.b1, sgp15ebbrE20.b1, sgp30ebbrE20.b1
D040112.1SGP/EBBR/E15 - Wind Direction About 130 Degrees Lowsgp5ebbrE15.b1, sgp15ebbrE15.b1, sgp30ebbrE15.b1
D040206.3SGP/EBBR/E7 - Pressure Sensor Data Incorretsgp5ebbrE7.b1, sgp15ebbrE7.b1, sgp30ebbrE7.b1
D040227.1SGP/EBBR/E15 - Net Radiometer not levelsgp5ebbrE15.b1, sgp30ebbrE15.b1
D040303.2SGP/EBBR/E22 - Wind Speed Sensor Bearings Wornsgp5ebbrE22.b1, sgp15ebbrE22.b1, sgp30ebbrE22.b1
D040304.12SGP/EBBR/E13 - Wind Speed Frozen Stopped By Icesgp5ebbrE13.b1, sgp15ebbrE13.b1, sgp30ebbrE13.b1
D040304.13SGP/EBBR/E13 - Wind Direction Frozen Stopped By Icesgp5ebbrE13.b1, sgp30ebbrE13.b1
D040304.14SGP/EBBR/E15 - Wind Speed Frozen Stopped By Icesgp5ebbrE15.b1, sgp15ebbrE15.b1, sgp30ebbrE15.b1
D040304.19SGP/EBBR/E20 - Wind Speed Frozen Stopped By Icesgp5ebbrE20.b1, sgp15ebbrE20.b1, sgp30ebbrE20.b1
D040304.20SGP/EBBR/E20 - Wind Direction Frozen Stopped By Icesgp5ebbrE20.b1, sgp30ebbrE20.b1
D040304.21SGP/EBBR/E22 - Wind Speed Frozen Stopped By Icesgp5ebbrE22.b1, sgp15ebbrE22.b1, sgp30ebbrE22.b1
D040304.22SGP/EBBR/E22 - Wind Direction Frozen Stopped By Icesgp5ebbrE22.b1, sgp30ebbrE22.b1
D040304.23SGP/EBBR/E4 - Wind Speed Frozen Stopped By Icesgp5ebbrE4.b1, sgp15ebbrE4.b1, sgp30ebbrE4.b1
D040304.24SGP/EBBR/E4 - Wind Direction Frozen Stopped By Icesgp5ebbrE4.b1, sgp30ebbrE4.b1
D040304.25SGP/EBBR/E27 - Wind Speed Frozen Stopped By Icesgp5ebbrE27.b1, sgp15ebbrE27.b1, sgp30ebbrE27.b1
D040304.3SGP/EBBR/E7 - Wind Speed Frozen Stopped By Icesgp5ebbrE7.b1, sgp15ebbrE7.b1, sgp30ebbrE7.b1
D040304.4SGP/EBBR/E7 - Tref Problem Causes All Temps. to be Incorrectsgp5ebbrE7.b1, sgp15ebbrE7.b1, sgp30ebbrE7.b1
D040304.6SGP/EBBR/E8 - Wind Speed Frozen Stopped By Icesgp5ebbrE8.b1, sgp15ebbrE8.b1, sgp30ebbrE8.b1
D040304.7SGP/EBBR/E8 - Wind Direction Frozen Stopped By Icesgp5ebbrE8.b1, sgp30ebbrE8.b1
D040304.8SGP/EBBR/E9 - Wind Speed Frozen Stopped By Icesgp5ebbrE9.b1, sgp15ebbrE9.b1, sgp30ebbrE9.b1
D040304.9SGP/EBBR/E9 - Wind Direction Frozen Stopped By Icesgp5ebbrE9.b1, sgp30ebbrE9.b1
D040318.13SGP/EBBR/E27 - Soil Moisture #5 Insensitivesgp30ebbrE27.b1
D040318.17SGP/EBBR/E8 - Wind Speed Sensor Frozen Stopped By Icingsgp5ebbrE8.b1, sgp15ebbrE8.b1, sgp30ebbrE8.b1
D040331.2SGP/EBBR/E8 - AEM Replacementsgp5ebbrE8.b1, sgp15ebbrE8.b1, sgp30ebbrE8.b1, sgp30baebbrE8.c1
D040507.1SGP/EBBR/E15 - Wind Speed Incorrectsgp5ebbrE15.b1, sgp15ebbrE15.b1, sgp30ebbrE15.b1, sgp30baebbrE15.c1
D040507.2SGP/EBBR/E20 - Left Air Temperature Incorrectsgp5ebbrE20.b1, sgp15ebbrE20.b1, sgp30ebbrE20.b1, sgp30baebbrE20.c1
D040507.3SGP/EBBR/E27 - Right Air Temperature Incorrectsgp5ebbrE27.b1, sgp15ebbrE27.b1, sgp30ebbrE27.b1
D040608.6SGP/EBBR/E13 - Automatic Exchange Mechanism Failuresgp5ebbrE13.b1, sgp15ebbrE13.b1, sgp30ebbrE13.b1
D040706.2SGP/EBBR/E22 - Net Radiation Incorrectsgp5ebbrE22.b1, sgp30ebbrE22.b1
D040706.3SGP/EBBR/E27 - Loose Tair Left Connectionssgp5ebbrE27.b1, sgp15ebbrE27.b1, sgp30ebbrE27.b1
D040722.1SGP/EBBR/E20 - Wind Direction Stuck at 100 Degreessgp5ebbrE20.b1, sgp15ebbrE20.b1, sgp30ebbrE20.b1
D040723.2SGP/EBBR/E9 - net radiometer top dome broken, water in bottom domesgp5ebbrE9.b1, sgp30ebbrE9.b1
D040723.3SGP/EBBR/E22 - Water In Net Radiometersgp5ebbrE22.b1, sgp30ebbrE22.b1
D040813.2SGP/EBBR/E20 - AEM Failuresgp5ebbrE20.b1, sgp15ebbrE20.b1, sgp30ebbrE20.b1
D040813.3SGP/EBBR/E27 - Data Missing or Incorrect During Battery Terminal Cleaningsgp5ebbrE27.b1, sgp15ebbrE27.b1, sgp30ebbrE27.b1
D040813.4SGP/EBBR/E4 - Net Radiation Incorrect, Sensible and Latent Heat Fluxes Incorrectsgp5ebbrE4.b1, sgp30ebbrE4.b1
D040813.8SGP/EBBR/E7 - Pressure Too Highsgp5ebbrE7.b1, sgp15ebbrE7.b1, sgp30ebbrE7.b1
D040915.2SGP/EBBR/E13 - Net Radiation Incorrect, Fluxes Incorrectsgp5ebbrE13.b1, sgp15ebbrE13.b1, sgp30ebbrE13.b1
D040915.5SGP/EBBR/E8 - Net Radiation Incorrect, Fluxes Incorrectsgp5ebbrE8.b1, sgp15ebbrE8.b1, sgp30ebbrE8.b1
D040915.6SGP/EBBR/E13 - AEM Failure, Fluxes Incorrectsgp5ebbrE13.b1, sgp15ebbrE13.b1, sgp30ebbrE13.b1
D040915.7SGP/EBBR/E20 - Soil Heat Flow #3 and Soil Temperature #3 Incorrectsgp15ebbrE20.b1, sgp30ebbrE20.b1
D041004.4SGP/EBBR/E15 - Soil Moisture Coefficients Incorrectsgp30ebbrE15.b1
D041005.3SGP/EBBR/E7 - Data Missingsgp5ebbrE7.b1, sgp15ebbrE7.b1, sgp30ebbrE7.b1
D041006.3SGP/EBBR/E20 - All Soil Measurements Incorrectsgp15ebbrE20.b1, sgp30ebbrE20.b1
D041222.10SGP/EBBR/E9 - 6 Month Checkssgp5ebbrE9.b1, sgp15ebbrE9.b1, sgp30ebbrE9.b1
D041222.12SGP/EBBR/E13 - 6 Month Checkssgp5ebbrE13.b1, sgp15ebbrE13.b1, sgp30ebbrE13.b1
D041222.13SGP/EBBR/E15 - 6 Month Checkssgp5ebbrE15.b1, sgp15ebbrE15.b1, sgp30ebbrE15.b1
D041222.16SGP/EBBR/E20 - 6 Month Checkssgp5ebbrE20.b1, sgp15ebbrE20.b1, sgp30ebbrE20.b1
D041222.17SGP/EBBR/E22 - 6 Month Checkssgp5ebbrE22.b1, sgp15ebbrE22.b1, sgp30ebbrE22.b1
D041222.19SGP/EBBR/E27 - 6 Month Checkssgp5ebbrE27.b1, sgp15ebbrE27.b1, sgp30ebbrE27.b1
D041222.3SGP/EBBR/E20 - Soil Moisture #4 and Soil Temperature #4 Incorrectsgp15ebbrE20.b1, sgp30ebbrE20.b1
D041222.7SGP/EBBR/E4 - 6 Month Checkssgp5ebbrE4.b1, sgp15ebbrE4.b1, sgp30ebbrE4.b1
D041222.8SGP/EBBR/E7 - 6 Month Checkssgp5ebbrE7.b1, sgp15ebbrE7.b1, sgp30ebbrE7.b1
D041222.9SGP/EBBR/E8 - 6 Month Checkssgp5ebbrE8.b1, sgp15ebbrE8.b1, sgp30ebbrE8.b1
D041223.1SGP/EBBR/E20 - Soil Heat Flow #4 Incorrectsgp15ebbrE20.b1, sgp30ebbrE20.b1
D050113.2SGP/EBBR/E9 - Wind Speed Threshhold Lowsgp5ebbrE9.b1, sgp15ebbrE9.b1, sgp30ebbrE9.b1
D050206.10SGP/EBBR/E13 - Wind Speed Frozen Stopped By Ice Stormsgp5ebbrE13.b1, sgp15ebbrE13.b1, sgp30ebbrE13.b1
D050206.11SGP/EBBR/E15 - Wind Speed Frozen Stopped By Ice Stormsgp5ebbrE15.b1, sgp15ebbrE15.b1, sgp30ebbrE15.b1
D050206.14SGP/EBBR/E20 - Wind Speed Frozen Stopped By Ice Stormsgp5ebbrE20.b1, sgp15ebbrE20.b1, sgp30ebbrE20.b1
D050206.15SGP/EBBR/E22 - Wind Speed Frozen Stopped By Ice Stormsgp5ebbrE22.b1, sgp15ebbrE22.b1, sgp30ebbrE22.b1
D050206.17SGP/EBBR/E27 - Wind Speed Frozen Stopped By Ice Stormsgp5ebbrE27.b1, sgp15ebbrE27.b1, sgp30ebbrE27.b1
D050206.5SGP/EBBR/E4 - Wind Speed Frozen Stopped By Ice Stormsgp5ebbrE4.b1, sgp15ebbrE4.b1, sgp30ebbrE4.b1
D050206.6SGP/EBBR/E7 - Wind Speed Frozen Stopped By Ice Stormsgp5ebbrE7.b1, sgp15ebbrE7.b1, sgp30ebbrE7.b1
D050206.7SGP/EBBR/E8 - Wind Speed Frozen Stopped By Ice Stormsgp5ebbrE8.b1, sgp15ebbrE8.b1, sgp30ebbrE8.b1
D050206.8SGP/EBBR/E9 - Wind Speed Frozen Stopped By Ice Stormsgp5ebbrE9.b1, sgp15ebbrE9.b1, sgp30ebbrE9.b1
D050207.10SGP/EBBR/E20 - Wind Direction Frozen Stopped By Ice Stormsgp5ebbrE20.b1, sgp15ebbrE20.b1, sgp30ebbrE20.b1
D050207.11SGP/EBBR/E22 - Wind Direction Frozen Stopped By Ice Stormsgp5ebbrE22.b1, sgp15ebbrE22.b1, sgp30ebbrE22.b1
D050207.13SGP/EBBR/E27 - Wind Direction Frozen Stopped By Ice Stormsgp5ebbrE27.b1, sgp15ebbrE27.b1, sgp30ebbrE27.b1
D050207.2SGP/EBBR/E4 - Wind Direction Frozen Stopped By Ice Stormsgp5ebbrE4.b1, sgp15ebbrE4.b1, sgp30ebbrE4.b1
D050207.3SGP/EBBR/E8 - Wind Direction Frozen Stopped By Ice Stormsgp5ebbrE8.b1, sgp15ebbrE8.b1, sgp30ebbrE8.b1
D050207.4SGP/EBBR/E9 - Wind Direction Frozen Stopped By Ice Stormsgp5ebbrE9.b1, sgp15ebbrE9.b1, sgp30ebbrE9.b1
D050207.6SGP/EBBR/E13 - Wind Direction Frozen Stopped By Ice Stormsgp5ebbrE13.b1, sgp15ebbrE13.b1, sgp30ebbrE13.b1
D050207.7SGP/EBBR/E15 - Wind Direction Frozen Stopped By Ice Stormsgp5ebbrE15.b1, sgp15ebbrE15.b1, sgp30ebbrE15.b1
D050211.2SGP/EBBR/E27 - Soil Moisture #5 Incorrectsgp30ebbrE27.b1
D050215.10SGP/EBBR/E4 - Wind Direction Frozen Stopped By Icesgp5ebbrE4.b1, sgp15ebbrE4.b1, sgp30ebbrE4.b1
D050215.11SGP/EBBR/E7 - Wind Speed Frozen Stopped By Icesgp5ebbrE7.b1, sgp15ebbrE7.b1, sgp30ebbrE7.b1
D050215.12SGP/EBBR/E8 - Wind Speed Frozen Stopped By Ice Stormsgp5ebbrE8.b1, sgp15ebbrE8.b1, sgp30ebbrE8.b1
D050215.13SGP/EBBR/E8 - Wind Direction Frozen Stopped By Icesgp5ebbrE8.b1, sgp15ebbrE8.b1, sgp30ebbrE8.b1
D050215.14SGP/EBBR/E9 - Wind Direction Frozen Stopped By Icesgp5ebbrE9.b1, sgp15ebbrE9.b1, sgp30ebbrE9.b1
D050215.15SGP/EBBR/E9 - Wind Speed Frozen Stopped By Icesgp5ebbrE9.b1, sgp15ebbrE9.b1, sgp30ebbrE9.b1
D050215.18SGP/EBBR/E15 - Wind Speed Frozen Stopped By Icesgp5ebbrE15.b1, sgp15ebbrE15.b1, sgp30ebbrE15.b1
D050215.19SGP/EBBR/E15 - Wind Direction Frozen Stopped By Icesgp5ebbrE15.b1, sgp15ebbrE15.b1, sgp30ebbrE15.b1
D050215.21SGP/EBBR/E22 - Wind Speed Frozen Stopped By Icesgp5ebbrE22.b1, sgp15ebbrE22.b1, sgp30ebbrE22.b1
D050215.22SGP/EBBR/E22 - Wind Direction Frozen Stopped By Icesgp5ebbrE22.b1, sgp15ebbrE22.b1, sgp30ebbrE22.b1
D050215.9SGP/EBBR/E4 - Wind Speed Frozen Stopped By Icesgp5ebbrE4.b1, sgp15ebbrE4.b1, sgp30ebbrE4.b1
D050303.4SGP/EBBR/E4 - Wind Speed and Direction Frozen by Ice Stormsgp5ebbrE4.b1, sgp15ebbrE4.b1, sgp30ebbrE4.b1
D050323.2SGP/EBBR/E22 - Net Radiation Too Low - Top Dome Brokensgp5ebbrE22.b1, sgp15ebbrE22.b1, sgp30ebbrE22.b1
D050324.1SGP/EBBR/E15 - Soil Heat Flows Undermeasured, and Latent and Sensible Heat Fluxes
Overstimated
sgp30ebbrE15.b1
D050330.2SGP/EBBR/E7 - Wrong Datalogger Programsgp30ebbrE7.b1
D050404.1SGP/EBBR/E20 - Wrong Datalogger Program Installedsgp30ebbrE20.b1
D050404.2SGP/EBBR/E4 - Soil Temperature #5 Spiking Upwardssgp30ebbrE4.b1
D050404.4SGP/EBBR/E20 - Temp. of thum_left Incorrect At Timessgp5ebbrE20.b1, sgp15ebbrE20.b1, sgp30ebbrE20.b1
D050413.3SGP/EBBR/E8 - Battery Voltage Problemsgp5ebbrE8.b1, sgp15ebbrE8.b1, sgp30ebbrE8.b1
D050413.6SGP/EBBR/E27 - SM2 Coefficients Incorectsgp15ebbrE27.b1, sgp30ebbrE27.b1
D050510.3SGP/EBBR/E13 - Net Radiometer Tilted Half Degree Westsgp5ebbrE13.b1, sgp15ebbrE13.b1, sgp30ebbrE13.b1
D050601.2SGP/EBBR/E9 - Soil moisture too highsgp15ebbrE9.b1, sgp30ebbrE9.b1
D050602.2SGP/EBBR/E4 - Water in Net Radiometersgp5ebbrE4.b1, sgp15ebbrE4.b1, sgp30ebbrE4.b1
D050622.1SGP/EBBR/E13 - Sensible and Latent Heat Fluxes Incorrect (AEM failure)sgp5ebbrE13.b1, sgp15ebbrE13.b1, sgp30ebbrE13.b1
D050624.1SGP/EBBR/E4 - All Measurements Incorrect Due to Low Battery Voltagesgp5ebbrE4.b1, sgp15ebbrE4.b1, sgp30ebbrE4.b1
D050624.2SGP/EBBR/E15 - Net Radiation Too Large - Water in Bottomsgp5ebbrE15.b1, sgp15ebbrE15.b1, sgp30ebbrE15.b1
D050624.7SGP/EBBR/E13 - Improved EBBR CR10 Programsgp30ebbrE13.b1
D050719.10SGP/EBBR/E15 - Improved EBBR CR10 Programsgp30ebbrE15.b1
D050719.13SGP/EBBR/E20 - Improved EBBR CR10 Programsgp30ebbrE20.b1
D050719.14SGP/EBBR/E22 - Improved EBBR CR10 Programsgp30ebbrE22.b1
D050719.16SGP/EBBR/E27 - Improved EBBR CR10 Programsgp30ebbrE27.b1
D050719.5SGP/EBBR/E4 - Improved EBBR CR10 Programsgp30ebbrE4.b1
D050719.6SGP/EBBR/E7 - Improved EBBR CR10 Programsgp30ebbrE7.b1
D050719.7SGP/EBBR/E8 - Improved EBBR CR10 Programsgp30ebbrE8.b1
D050719.8SGP/EBBR/E9 - Improved EBBR CR10 Programsgp30ebbrE9.b1
D050922.2SGP/EBBR/E20 - Soil Temperature and Soil Moisture #4 Measurements Incorrectsgp15ebbrE20.b1, sgp30ebbrE20.b1
D051024.1SGP/EBBR/E7 - Data Missingsgp5ebbrE7.b1, sgp15ebbrE7.b1, sgp30ebbrE7.b1
D051104.1SGP/EBBR/E9 - Net Radiation Incorrect: Sensible and Latent Heat Fluxes Incorrectsgp5ebbrE9.b1, sgp15ebbrE9.b1, sgp30ebbrE9.b1
D051104.2SGP/EBBR/E13 - Fluxes Incorrectsgp5ebbrE13.b1, sgp15ebbrE13.b1, sgp30ebbrE13.b1
D051104.3SGP/EBBR/E13 - Loose connectionssgp5ebbrE13.b1, sgp15ebbrE13.b1, sgp30ebbrE13.b1
D051106.12SGP/EBBR/E20 - All E20 EBBR Data Missingsgp5ebbrE20.b1, sgp15ebbrE20.b1, sgp30ebbrE20.b1
D051106.13SGP/EBBR/E22 - Net Radiation Incorrect; Sensible and Latent Heat Fluxes Incorrectsgp5ebbrE22.b1, sgp15ebbrE22.b1, sgp30ebbrE22.b1
D051106.15SGP/EBBR/E27 - Net Radiation Incorrect; Sensible and Latent Heat Fluxes Incorrectsgp5ebbrE27.b1, sgp15ebbrE27.b1, sgp30ebbrE27.b1
D051106.16SGP/EBBR/E27 - Net Radiation Incorrect; Sensible and Latent Heat Fluxes Incorredtsgp5ebbrE27.b1, sgp15ebbrE27.b1, sgp30ebbrE27.b1
D051106.17SGP/EBBR/E27 - All E27 EBBR Data is Missingsgp5ebbrE27.b1, sgp15ebbrE27.b1, sgp30ebbrE27.b1
D051106.19SGP/EBBR/E4 - Average Soil Heat Flux Incorrectsgp30ebbrE4.b1
D051106.2SGP/EBBR/E4 - All EBBR Data Missingsgp5ebbrE4.b1, sgp15ebbrE4.b1, sgp30ebbrE4.b1
D051106.20SGP/EBBR/E7 - Average Soil Heat Flux Incorrectsgp30ebbrE7.b1
D051106.21SGP/EBBR/E8 - Average Soil Heat Flux Incorrectsgp30ebbrE8.b1
D051106.22SGP/EBBR/E9 - Average Soil Heat Flux Incorrectsgp30ebbrE9.b1
D051106.24SGP/EBBR/E13 - Average Soil Heat Flux Incorrectsgp30ebbrE13.b1
D051106.25SGP/EBBR/E15 - Average Soil Heat Flux Incorrectsgp30ebbrE15.b1
D051106.28SGP/EBBR/E20 - Average Soil Heat Flux Incorrectsgp30ebbrE20.b1
D051106.29SGP/EBBR/E22 - Average Soil Heat Flux Incorrectsgp30ebbrE22.b1
D051106.3SGP/EBBR/E7 - Net Radiation Incorrect; Sensible and Latent Heat Fluxes Incorrectsgp5ebbrE7.b1, sgp15ebbrE7.b1, sgp30ebbrE7.b1
D051106.31SGP/EBBR/E27 - Average Soil Heat Flux Incorrectsgp30ebbrE27.b1
D051106.4SGP/EBBR/E8 - Soil Heat Flow #2 Incorrectsgp15ebbrE8.b1, sgp30ebbrE8.b1
D051106.5SGP/EBBR/E8 - Net Radiation Incorrect; Sensible and Latent Heat Fluxes Incorrectsgp5ebbrE8.b1, sgp15ebbrE8.b1, sgp30ebbrE8.b1
D051106.6SGP/EBBR/E9 - All EBBR Data Missingsgp5ebbrE9.b1, sgp15ebbrE9.b1, sgp30ebbrE9.b1
D051106.8SGP/EBBR/E13 - All EBBR Data Missingsgp5ebbrE13.b1, sgp15ebbrE13.b1, sgp30ebbrE13.b1
D051106.9SGP/EBBR/E15 - Soil Set #5 Temperature, Moisture, and Heat Flow Incorrectsgp15ebbrE15.b1, sgp30ebbrE15.b1
D051111.11SGP/EBBR/E13 - metadata correctionssgp5ebbrE13.b1, sgp15ebbrE13.b1, sgp30ebbrE13.b1
D051111.12SGP/EBBR/E15 - metadata correctionssgp5ebbrE15.b1, sgp15ebbrE15.b1, sgp30ebbrE15.b1
D051112.10SGP/EBBR/E27 - metadata correctionssgp5ebbrE27.b1, sgp15ebbrE27.b1, sgp30ebbrE27.b1
D051112.3SGP/EBBR/E4 - metadata correctionssgp5ebbrE4.b1, sgp15ebbrE4.b1, sgp30ebbrE4.b1
D051112.4SGP/EBBR/E7 - metadata correctionssgp5ebbrE7.b1, sgp15ebbrE7.b1, sgp30ebbrE7.b1
D051112.5SGP/EBBR/E8 - metadata correctionssgp5ebbrE8.b1, sgp15ebbrE8.b1, sgp30ebbrE8.b1
D051112.6SGP/EBBR/E9 - metadata correctionssgp5ebbrE9.b1, sgp15ebbrE9.b1, sgp30ebbrE9.b1
D051112.7SGP/EBBR/E20 - metadata correctionssgp5ebbrE20.b1, sgp15ebbrE20.b1, sgp30ebbrE20.b1
D051112.8SGP/EBBR/E22 - metadata correctionssgp5ebbrE22.b1, sgp15ebbrE22.b1, sgp30ebbrE22.b1
D051215.1SGP/EBBR/E4 - Net Radiation, Sensible and Latent Heat Fluxes Incorrectsgp5ebbrE4.b1, sgp15ebbrE4.b1, sgp30ebbrE4.b1
D051215.2SGP/EBBR/E9 - Net Radiation, Sensible and Latent Heat Fluxes Incorrectsgp5ebbrE9.b1, sgp15ebbrE9.b1, sgp30ebbrE9.b1
D051215.3SGP/EBBR/E15 - Net Radiation, Sensible and Latent Heat Fluxes Incorrect.sgp5ebbrE15.b1, sgp15ebbrE15.b1, sgp30ebbrE15.b1
D051215.4SGP/EBBR/E15 - Missing Datasgp5ebbrE15.b1, sgp15ebbrE15.b1, sgp30ebbrE15.b1
D060111.11SGP/EBBR/E15 - Reprocess: Sensible and Latent Heat Fluxes, Soil Set #2 Sometimes Incorrectsgp30ebbrE15.b1
D060111.12SGP/EBBR/E15 - Data Missingsgp5ebbrE15.b1, sgp15ebbrE15.b1, sgp30ebbrE15.b1
D060111.13SGP/EBBR/E20 - Data Incorrect During J-Panel Replacementsgp5ebbrE20.b1, sgp15ebbrE20.b1, sgp30ebbrE20.b1
D060111.2SGP/EBBR/E4 - Sensible and Latent Heat Fluxes Incorrectsgp5ebbrE4.b1, sgp15ebbrE4.b1, sgp30ebbrE4.b1
D060111.3SGP/EBBR/E7 - Barometric Pressure Incorrectsgp5ebbrE7.b1, sgp15ebbrE7.b1, sgp30ebbrE7.b1
D060111.4SGP/EBBR/E8 - AEM Not Exchangingsgp5ebbrE8.b1, sgp15ebbrE8.b1, sgp30ebbrE8.b1
D060111.9SGP/EBBR/E13 - Wind Speed Sensor Frozensgp5ebbrE13.b1, sgp15ebbrE13.b1, sgp30ebbrE13.b1
D060501.6SGP/EBBR/E8 - Flux and Gradient Measurements Suspectsgp5ebbrE8.b1, sgp15ebbrE8.b1, sgp30ebbrE8.b1


DQRID : D031211.5
Start DateStart TimeEnd DateEnd Time
11/28/2003143001/21/20042130
Subject:
SGP/EBBR/E20 - Pressure Sensor Data Incorrect
DataStreams:sgp5ebbrE20.b1, sgp15ebbrE20.b1, sgp30ebbrE20.b1
Description:
The E20 pressure sensor suffered
from spikes in pressure, which were related to 
increases in voltage during the day as the 
solar panels charged the battery.  These spikes
were not of a magnitude that would affect the 
30 minute surface fluxes.

Replacement of the pressure sensor solved the problem.
Measurements:sgp30ebbrE20.b1:
  • pressure at constant pressure surface(pres)

sgp15ebbrE20.b1:
  • Atmospheric pressure(mv_pres)

sgp5ebbrE20.b1:
  • pressure at constant pressure surface(pres)


Back To Table of Contents

DQRID : D040112.1
Start DateStart TimeEnd DateEnd Time
12/25/2003215001/20/20042030
Subject:
SGP/EBBR/E15 - Wind Direction About 130 Degrees Low
DataStreams:sgp5ebbrE15.b1, sgp15ebbrE15.b1, sgp30ebbrE15.b1
Description:
The EBBR wind direction sensor developed an approximately -130 degree offset. The pin 
holding the vane to the shaft had fallen out.
Measurements:sgp15ebbrE15.b1:
  • Wind direction (relative to true north)(mv_wind_d)

sgp30ebbrE15.b1:
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • wind direction (relative to true north)(wind_d)
  • Resultant wind speed(res_ws)

sgp5ebbrE15.b1:
  • wind direction (relative to true north)(wind_d)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • Resultant wind speed(res_ws)


Back To Table of Contents

DQRID : D040206.3
Start DateStart TimeEnd DateEnd Time
10/13/2003000001/28/20042030
Subject:
SGP/EBBR/E7 - Pressure Sensor Data Incorret
DataStreams:sgp5ebbrE7.b1, sgp15ebbrE7.b1, sgp30ebbrE7.b1
Description:
The E7 pressure sensor suffered
from spikes in pressure, which were related to 
increases in voltage during the day as the 
solar panels charged the battery.  These spikes
were not of a magnitude that would affect the 
30 minute surface fluxes.

Replacement of the pressure sensor solved the problem.
Measurements:sgp15ebbrE7.b1:
  • Atmospheric pressure(mv_pres)

sgp30ebbrE7.b1:
  • pressure at constant pressure surface(pres)

sgp5ebbrE7.b1:
  • pressure at constant pressure surface(pres)


Back To Table of Contents

DQRID : D040227.1
Start DateStart TimeEnd DateEnd Time
02/26/2004000003/02/20041705
Subject:
SGP/EBBR/E15 - Net Radiometer not level
DataStreams:sgp5ebbrE15.b1, sgp30ebbrE15.b1
Description:
The EBBR net radiometer at E15 was suspected to be off of level
               because the daily peak net radiation was recorded later than it 
               was recorded by the SIRS.

               Site Ops found the EBBR net radiometer at E15 was significantly 
               off of level (1/2 bubble tipped to the north).  Adjustment of 
               the level improved the comparison of peak time with the 
               co-located SIRS.

               There was no significant effect on the sensible and latent heat 
               fluxes.
Measurements:sgp30ebbrE15.b1:
  • specific humidity(q)

sgp5ebbrE15.b1:
  • specific humidity(q)


Back To Table of Contents

DQRID : D040303.2
Start DateStart TimeEnd DateEnd Time
12/13/2003000003/17/20041835
Subject:
SGP/EBBR/E22 - Wind Speed Sensor Bearings Worn
DataStreams:sgp5ebbrE22.b1, sgp15ebbrE22.b1, sgp30ebbrE22.b1
Description:
Wind speed was too low and/or often at or near zero due to
               worn bearings in the wind speed sensor.  Sensor was replaced
               3/17/04.
Measurements:sgp30ebbrE22.b1:
  • scalar wind speed(wind_s)
  • Resultant wind speed(res_ws)

sgp5ebbrE22.b1:
  • Resultant wind speed(res_ws)
  • scalar wind speed(wind_s)

sgp15ebbrE22.b1:
  • scalar wind speed(wind_s)


Back To Table of Contents

DQRID : D040304.12
Start DateStart TimeEnd DateEnd Time
02/09/2004112502/09/20041500
Subject:
SGP/EBBR/E13  - Wind Speed Frozen Stopped By Ice
DataStreams:sgp5ebbrE13.b1, sgp15ebbrE13.b1, sgp30ebbrE13.b1
Description:
An ice storm froze the wind speed sensor to a stopped condition.

The wind speed and residual wind speed measurements are incorrect.

This sensor failure does not affect the sensible and latent heat fluxes.
Measurements:sgp15ebbrE13.b1:
  • scalar wind speed(wind_s)

sgp5ebbrE13.b1:
  • Resultant wind speed(res_ws)
  • scalar wind speed(wind_s)

sgp30ebbrE13.b1:
  • scalar wind speed(wind_s)
  • Resultant wind speed(res_ws)


Back To Table of Contents

DQRID : D040304.13
Start DateStart TimeEnd DateEnd Time
02/02/2004004002/03/20041810
02/09/2004112502/09/20041500
Subject:
SGP/EBBR/E13  - Wind Direction Frozen Stopped By Ice
DataStreams:sgp5ebbrE13.b1, sgp30ebbrE13.b1
Description:
The wind direction sensor was frozen stopped by ice from a storm.  
The wind direction, sigma_wd, and residual wind speed measurements 
are incorrect.
Measurements:sgp5ebbrE13.b1:
  • Resultant wind speed(res_ws)
  • wind direction (relative to true north)(wind_d)
  • standard deviation of wind direction (sigma theta)(sigma_wd)

sgp30ebbrE13.b1:
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • wind direction (relative to true north)(wind_d)
  • Resultant wind speed(res_ws)


Back To Table of Contents

DQRID : D040304.14
Start DateStart TimeEnd DateEnd Time
02/01/2004181002/02/20042040
02/04/2004224002/05/20041840
02/09/2004102002/09/20041430
Subject:
SGP/EBBR/E15  - Wind Speed Frozen Stopped By Ice
DataStreams:sgp5ebbrE15.b1, sgp15ebbrE15.b1, sgp30ebbrE15.b1
Description:
An ice storm froze the wind speed sensor to a stopped condition.

The wind speed and residual wind speed measurements are incorrect.

This sensor failure does not affect the sensible and latent heat fluxes.
Measurements:sgp15ebbrE15.b1:
  • scalar wind speed(wind_s)

sgp30ebbrE15.b1:
  • scalar wind speed(wind_s)
  • Resultant wind speed(res_ws)

sgp5ebbrE15.b1:
  • scalar wind speed(wind_s)
  • Resultant wind speed(res_ws)


Back To Table of Contents

DQRID : D040304.19
Start DateStart TimeEnd DateEnd Time
02/02/2004050502/02/20041845
Subject:
SGP/EBBR/E20  - Wind Speed Frozen Stopped By Ice
DataStreams:sgp5ebbrE20.b1, sgp15ebbrE20.b1, sgp30ebbrE20.b1
Description:
An ice storm froze the wind speed sensor to a stopped condition.

The wind speed and residual wind speed measurements are incorrect.

This sensor failure does not affect the sensible and latent heat fluxes.
Measurements:sgp30ebbrE20.b1:
  • Resultant wind speed(res_ws)
  • scalar wind speed(wind_s)

sgp15ebbrE20.b1:
  • scalar wind speed(wind_s)

sgp5ebbrE20.b1:
  • Resultant wind speed(res_ws)
  • scalar wind speed(wind_s)


Back To Table of Contents

DQRID : D040304.20
Start DateStart TimeEnd DateEnd Time
02/02/2004053502/02/20041755
Subject:
SGP/EBBR/E20  - Wind Direction Frozen Stopped By Ice
DataStreams:sgp5ebbrE20.b1, sgp30ebbrE20.b1
Description:
The wind direction sensor was frozen stopped by ice from a storm.  
The wind direction, sigma_wd, and residual wind speed measurements 
are incorrect.
Measurements:sgp30ebbrE20.b1:
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • wind direction (relative to true north)(wind_d)
  • Resultant wind speed(res_ws)

sgp5ebbrE20.b1:
  • wind direction (relative to true north)(wind_d)
  • Resultant wind speed(res_ws)
  • standard deviation of wind direction (sigma theta)(sigma_wd)


Back To Table of Contents

DQRID : D040304.21
Start DateStart TimeEnd DateEnd Time
01/24/2004234501/25/20040135
02/01/2004192002/02/20041740
02/03/2004035002/03/20041440
02/05/2004092502/05/20041615
Subject:
SGP/EBBR/E22  - Wind Speed Frozen Stopped By Ice
DataStreams:sgp5ebbrE22.b1, sgp15ebbrE22.b1, sgp30ebbrE22.b1
Description:
An ice storm froze the wind speed sensor to a stopped condition.

The wind speed and residual wind speed measurements are incorrect.

This sensor failure does not affect the sensible and latent heat fluxes.
Measurements:sgp30ebbrE22.b1:
  • scalar wind speed(wind_s)
  • Resultant wind speed(res_ws)

sgp5ebbrE22.b1:
  • Resultant wind speed(res_ws)
  • scalar wind speed(wind_s)

sgp15ebbrE22.b1:
  • scalar wind speed(wind_s)


Back To Table of Contents

DQRID : D040304.22
Start DateStart TimeEnd DateEnd Time
02/05/2004112002/05/20041500
Subject:
SGP/EBBR/E22  - Wind Direction Frozen Stopped By Ice
DataStreams:sgp5ebbrE22.b1, sgp30ebbrE22.b1
Description:
The wind direction sensor was frozen stopped by ice from a storm.  
The wind direction, sigma_wd, and residual wind speed measurements 
are incorrect.
Measurements:sgp30ebbrE22.b1:
  • wind direction (relative to true north)(wind_d)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • Resultant wind speed(res_ws)

sgp5ebbrE22.b1:
  • Resultant wind speed(res_ws)
  • wind direction (relative to true north)(wind_d)
  • standard deviation of wind direction (sigma theta)(sigma_wd)


Back To Table of Contents

DQRID : D040304.23
Start DateStart TimeEnd DateEnd Time
01/26/2004011001/27/20042135
02/01/2004000002/04/20041430
Subject:
SGP/EBBR/E4  - Wind Speed Frozen Stopped By Ice
DataStreams:sgp5ebbrE4.b1, sgp15ebbrE4.b1, sgp30ebbrE4.b1
Description:
An ice storm froze the wind speed sensor to a stopped condition.

The wind speed and residual wind speed measurements are incorrect.

This sensor failure does not affect the sensible and latent heat fluxes.
Measurements:sgp5ebbrE4.b1:
  • scalar wind speed(wind_s)
  • Resultant wind speed(res_ws)

sgp30ebbrE4.b1:
  • Resultant wind speed(res_ws)
  • scalar wind speed(wind_s)

sgp15ebbrE4.b1:
  • scalar wind speed(wind_s)


Back To Table of Contents

DQRID : D040304.24
Start DateStart TimeEnd DateEnd Time
01/27/2004112501/27/20041850
Subject:
SGP/EBBR/E4  - Wind Direction Frozen Stopped By Ice
DataStreams:sgp5ebbrE4.b1, sgp30ebbrE4.b1
Description:
The wind direction sensor was frozen stopped by ice from a storm.  
The wind direction, sigma_wd, and residual wind speed measurements 
are incorrect.
Measurements:sgp5ebbrE4.b1:
  • wind direction (relative to true north)(wind_d)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • Resultant wind speed(res_ws)

sgp30ebbrE4.b1:
  • wind direction (relative to true north)(wind_d)
  • Resultant wind speed(res_ws)
  • standard deviation of wind direction (sigma theta)(sigma_wd)


Back To Table of Contents

DQRID : D040304.25
Start DateStart TimeEnd DateEnd Time
02/02/2004070502/02/20041800
02/05/2004020502/05/20040600
Subject:
SGP/EBBR/E27  - Wind Speed Frozen Stopped By Ice
DataStreams:sgp5ebbrE27.b1, sgp15ebbrE27.b1, sgp30ebbrE27.b1
Description:
An ice storm froze the wind speed sensor to a stopped condition.

The wind speed and residual wind speed measurements are incorrect.

This sensor failure does not affect the sensible and latent heat fluxes.
Measurements:sgp5ebbrE27.b1:
  • Resultant wind speed(res_ws)
  • scalar wind speed(wind_s)

sgp30ebbrE27.b1:
  • Resultant wind speed(res_ws)
  • scalar wind speed(wind_s)

sgp15ebbrE27.b1:
  • scalar wind speed(wind_s)


Back To Table of Contents

DQRID : D040304.3
Start DateStart TimeEnd DateEnd Time
01/26/2004075501/28/20041550
02/02/2004084002/03/20041650
02/05/2004233002/06/20041210
Subject:
SGP/EBBR/E7  - Wind Speed Frozen Stopped By Ice
DataStreams:sgp5ebbrE7.b1, sgp15ebbrE7.b1, sgp30ebbrE7.b1
Description:
The wind speed sensor was frozen stopped by ice from a storm.  The wind speed 
and residual wind speed measurements are incorrect.
Measurements:sgp5ebbrE7.b1:
  • scalar wind speed(wind_s)
  • Resultant wind speed(res_ws)

sgp30ebbrE7.b1:
  • Resultant wind speed(res_ws)
  • scalar wind speed(wind_s)

sgp15ebbrE7.b1:
  • scalar wind speed(wind_s)


Back To Table of Contents

DQRID : D040304.4
Start DateStart TimeEnd DateEnd Time
02/19/2004212002/20/20040305
Subject:
SGP/EBBR/E7 - Tref Problem Causes All Temps. to be Incorrect
DataStreams:sgp5ebbrE7.b1, sgp15ebbrE7.b1, sgp30ebbrE7.b1
Description:
The Tref sensor went crazy for this brief period, making all temperature
measurements incorrect.
Measurements:sgp15ebbrE7.b1:
  • Right air temperature(tair_r)
  • Left air temperature(tair_l)

sgp30ebbrE7.b1:
  • 0-5 cm integrated soil temperature, site 5(ts5)
  • top air temperature(tair_top)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • 0-5 cm integrated soil temperature, site 2(ts1)
  • 0-5 cm integrated soil temperature, site 4(ts4)
  • temperature of the top humidity sensor chamber(thum_top)
  • bottom air temperature(tair_bot)
  • Reference Thermistor Temperature(tref)
  • 0-5 cm integrated soil temperature, site 2(ts2)
  • 0-5 cm integrated soil temperature, site 3(ts3)

sgp5ebbrE7.b1:
  • Reference Thermistor Temperature(tref)
  • temperature of the top humidity sensor chamber(thum_top)
  • top air temperature(tair_top)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • bottom air temperature(tair_bot)


Back To Table of Contents

DQRID : D040304.6
Start DateStart TimeEnd DateEnd Time
01/31/2004191002/04/20041750
02/05/2004102002/06/20040820
Subject:
SGP/EBBR/E8  - Wind Speed Frozen Stopped By Ice
DataStreams:sgp5ebbrE8.b1, sgp15ebbrE8.b1, sgp30ebbrE8.b1
Description:
An ice storm froze the wind speed sensor to a stopped condition.

The wind speed and residual wind speed measurements are incorrect.

This sensor failure does not affect the sensible and latent heat fluxes.
Measurements:sgp30ebbrE8.b1:
  • Resultant wind speed(res_ws)
  • scalar wind speed(wind_s)

sgp5ebbrE8.b1:
  • Resultant wind speed(res_ws)
  • scalar wind speed(wind_s)

sgp15ebbrE8.b1:
  • scalar wind speed(wind_s)


Back To Table of Contents

DQRID : D040304.7
Start DateStart TimeEnd DateEnd Time
01/25/2004230001/26/20042135
01/27/2004042501/27/20040630
01/27/2004113001/27/20041740
Subject:
SGP/EBBR/E8  - Wind Direction Frozen Stopped By Ice
DataStreams:sgp5ebbrE8.b1, sgp30ebbrE8.b1
Description:
The wind direction sensor was frozen stopped by ice from a storm.  
The wind direction, sigma_wd, and residual wind speed measurements 
are incorrect.
Measurements:sgp30ebbrE8.b1:
  • Resultant wind speed(res_ws)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • wind direction (relative to true north)(wind_d)

sgp5ebbrE8.b1:
  • Resultant wind speed(res_ws)
  • wind direction (relative to true north)(wind_d)
  • standard deviation of wind direction (sigma theta)(sigma_wd)


Back To Table of Contents

DQRID : D040304.8
Start DateStart TimeEnd DateEnd Time
01/27/2004174501/27/20041800
01/27/2004193501/28/20040140
01/28/2004033001/28/20040355
01/31/2004180002/12/20041640
Subject:
SGP/EBBR/E9  - Wind Speed Frozen Stopped By Ice
DataStreams:sgp5ebbrE9.b1, sgp15ebbrE9.b1, sgp30ebbrE9.b1
Description:
An ice storm froze the wind speed sensor to a stopped condition. The bearings
in the sensor appear to be worn, contributing to the problem.

The wind speed and residual wind speed measurements are incorrect.

This sensor failure does not affect the sensible and latent heat fluxes.
Measurements:sgp15ebbrE9.b1:
  • scalar wind speed(wind_s)

sgp5ebbrE9.b1:
  • scalar wind speed(wind_s)
  • Resultant wind speed(res_ws)

sgp30ebbrE9.b1:
  • scalar wind speed(wind_s)
  • Resultant wind speed(res_ws)


Back To Table of Contents

DQRID : D040304.9
Start DateStart TimeEnd DateEnd Time
02/02/2004000002/03/20041740
02/05/2004112002/05/20041405
02/09/2004094502/09/20041430
Subject:
SGP/EBBR/E9  - Wind Direction Frozen Stopped By Ice
DataStreams:sgp5ebbrE9.b1, sgp30ebbrE9.b1
Description:
The wind direction sensor was frozen stopped by ice from a storm.  
The wind direction, sigma_wd, and residual wind speed measurements 
are incorrect.
Measurements:sgp5ebbrE9.b1:
  • wind direction (relative to true north)(wind_d)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • Resultant wind speed(res_ws)

sgp30ebbrE9.b1:
  • Resultant wind speed(res_ws)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • wind direction (relative to true north)(wind_d)


Back To Table of Contents

DQRID : D040318.13
Start DateStart TimeEnd DateEnd Time
01/25/2004060005/12/20041930
Subject:
SGP/EBBR/E27 - Soil Moisture #5 Insensitive
DataStreams:sgp30ebbrE27.b1
Description:
Soil moisture sensor #5 was insensitive and put out a value of around 30%.

Sensible and latent heat fluxes were not significantly affected by this
small error.
Measurements:sgp30ebbrE27.b1:
  • Soil heat capacity 5(cs5)
  • 5 cm soil heat flow corrected for soil moisture content, site 5(c_shf5)
  • 0-5 cm change in soil heat storage with time, site 5(ces5)
  • soil heat flow at the surface 5(g5)
  • Soil moisture 5 (mass water/mass dry soil)(sm5)


Back To Table of Contents

DQRID : D040318.17
Start DateStart TimeEnd DateEnd Time
02/26/2004071002/26/20041410
Subject:
SGP/EBBR/E8  - Wind Speed Sensor Frozen Stopped By Icing
DataStreams:sgp5ebbrE8.b1, sgp15ebbrE8.b1, sgp30ebbrE8.b1
Description:
An ice storm froze the wind speed sensor to a stopped condition.

The wind speed and residual wind speed measurements are incorrect.

This sensor failure does not affect the sensible and latent heat fluxes.
Measurements:sgp30ebbrE8.b1:
  • Resultant wind speed(res_ws)
  • scalar wind speed(wind_s)

sgp5ebbrE8.b1:
  • Resultant wind speed(res_ws)
  • scalar wind speed(wind_s)

sgp15ebbrE8.b1:
  • scalar wind speed(wind_s)


Back To Table of Contents

DQRID : D040331.2
Start DateStart TimeEnd DateEnd Time
04/05/2004000004/06/20041755
Subject:
SGP/EBBR/E8 - AEM Replacement
DataStreams:sgp5ebbrE8.b1, sgp15ebbrE8.b1, sgp30ebbrE8.b1, sgp30baebbrE8.c1
Description:
The AEM at E8 kept hanging in between home positions.

This DQR covers only the period during which the AEM was being
replaced.  

DQRs generally are not issued for AEMs that are not working
as qc flags indicate this clearly.
Measurements:sgp30ebbrE8.b1:
  • bottom air temperature(tair_bot)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • top vapor pressure(vp_top)
  • top relative humidity(hum_top)
  • bottom vapor pressure(vp_bot)
  • latent heat flux(e)
  • corrected sensible heat flux(h)
  • bottom relative humidity(hum_bot)
  • ratio of sensible/latent heat fluxes (Bowen ratio)(bowen)
  • top air temperature(tair_top)
  • temperature of the top humidity sensor chamber(thum_top)

sgp5ebbrE8.b1:
  • temperature of the top humidity sensor chamber(thum_top)
  • bottom air temperature(tair_bot)
  • bottom vapor pressure(vp_bot)
  • bottom relative humidity(hum_bot)
  • top air temperature(tair_top)
  • top relative humidity(hum_top)
  • top vapor pressure(vp_top)
  • temperature of the bottom humidity sensor chamber(thum_bot)

sgp30baebbrE8.c1:
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • Aerodynamic Latent heat flux(ale)
  • Best estimate Sensible heat flux(hcomb)
  • latent heat flux(e)
  • ratio of sensible/latent heat fluxes (Bowen ratio)(bowen)
  • bottom relative humidity(hum_bot)
  • top air temperature(tair_top)
  • Aerodynamic Sensible heat flux(ah)
  • temperature of the top humidity sensor chamber(thum_top)
  • Best estimate Latent heat flux(ecomb)
  • top relative humidity(hum_top)
  • bottom air temperature(tair_bot)
  • corrected sensible heat flux(h)
  • bottom vapor pressure(vp_bot)
  • top vapor pressure(vp_top)

sgp15ebbrE8.b1:
  • Right air temperature(tair_r)
  • Left air temperature(tair_l)


Back To Table of Contents

DQRID : D040507.1
Start DateStart TimeEnd DateEnd Time
04/23/2004213004/27/20041630
Subject:
SGP/EBBR/E15 - Wind Speed Incorrect
DataStreams:sgp5ebbrE15.b1, sgp15ebbrE15.b1, sgp30ebbrE15.b1, sgp30baebbrE15.c1
Description:
The cups were broken off of the wind speed sensor by hail on 4/23/04. The cups were 
replaced on 4/27/04.  Wind speed measurements were near zero and incorrect during the indicated 
period.
Measurements:sgp15ebbrE15.b1:
  • scalar wind speed(wind_s)

sgp30ebbrE15.b1:
  • scalar wind speed(wind_s)
  • Resultant wind speed(res_ws)

sgp30baebbrE15.c1:
  • scalar wind speed(wind_s)
  • Resultant wind speed(res_ws)

sgp5ebbrE15.b1:
  • scalar wind speed(wind_s)
  • Resultant wind speed(res_ws)


Back To Table of Contents

DQRID : D040507.2
Start DateStart TimeEnd DateEnd Time
03/01/2004000003/31/20042355
Subject:
SGP/EBBR/E20 - Left Air Temperature Incorrect
DataStreams:sgp5ebbrE20.b1, sgp15ebbrE20.b1, sgp30ebbrE20.b1, sgp30baebbrE20.c1
Description:
The left air temperature, and therefore top and bottom air temperatures
were offscale or incorrect on occasion.  Bowen ratio, sensible heat flux, and latent heat 
flux were also incorrect during those times.

Inspection of the data is required to detect the incorrect periods.
Measurements:sgp30ebbrE20.b1:
  • top air temperature(tair_top)
  • ratio of sensible/latent heat fluxes (Bowen ratio)(bowen)
  • latent heat flux(e)
  • corrected sensible heat flux(h)
  • bottom air temperature(tair_bot)

sgp15ebbrE20.b1:
  • Left air temperature(tair_l)

sgp5ebbrE20.b1:
  • top air temperature(tair_top)
  • bottom air temperature(tair_bot)

sgp30baebbrE20.c1:
  • Aerodynamic Latent heat flux(ale)
  • top air temperature(tair_top)
  • Aerodynamic Sensible heat flux(ah)
  • ratio of sensible/latent heat fluxes (Bowen ratio)(bowen)
  • bottom air temperature(tair_bot)
  • Best estimate Sensible heat flux(hcomb)
  • Best estimate Latent heat flux(ecomb)
  • corrected sensible heat flux(h)
  • latent heat flux(e)


Back To Table of Contents

DQRID : D040507.3
Start DateStart TimeEnd DateEnd Time
03/01/2004000003/31/20042355
Subject:
SGP/EBBR/E27  - Right Air Temperature Incorrect
DataStreams:sgp5ebbrE27.b1, sgp15ebbrE27.b1, sgp30ebbrE27.b1
Description:
The right air temperature, and therefore top and bottom air temperatures
were offscale or incorrect on occasion.  Bowen ratio, sensible heat flux, and latent heat 
flux were also incorrect during those times.

Inspection of the data is required to detect the incorrect periods.
Measurements:sgp5ebbrE27.b1:
  • bottom air temperature(tair_bot)
  • top air temperature(tair_top)

sgp30ebbrE27.b1:
  • bottom air temperature(tair_bot)
  • corrected sensible heat flux(h)
  • latent heat flux(e)
  • top air temperature(tair_top)
  • ratio of sensible/latent heat fluxes (Bowen ratio)(bowen)

sgp15ebbrE27.b1:
  • Right air temperature(tair_r)


Back To Table of Contents

DQRID : D040608.6
Start DateStart TimeEnd DateEnd Time
06/05/2004013007/14/20041515
Subject:
SGP/EBBR/E13 - Automatic Exchange Mechanism Failure
DataStreams:sgp5ebbrE13.b1, sgp15ebbrE13.b1, sgp30ebbrE13.b1
Description:
The AEM was stuck in the home_15 position or reported near zero
home signals during much of the indicated period.

The Bowen ratio and latent and sensible heat fluxes were incorrect 
when the AEM was not operating properly; the periods of incorrect
data can be determined from the home signal values.

On 7/14/04 the AEM was replaced.
Measurements:sgp15ebbrE13.b1:
  • Left air temperature(tair_l)
  • Right air temperature(tair_r)

sgp5ebbrE13.b1:
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • top vapor pressure(vp_top)
  • top air temperature(tair_top)
  • temperature of the top humidity sensor chamber(thum_top)
  • bottom vapor pressure(vp_bot)
  • bottom relative humidity(hum_bot)
  • top relative humidity(hum_top)
  • bottom air temperature(tair_bot)

sgp30ebbrE13.b1:
  • bottom relative humidity(hum_bot)
  • ratio of sensible/latent heat fluxes (Bowen ratio)(bowen)
  • bottom vapor pressure(vp_bot)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • temperature of the top humidity sensor chamber(thum_top)
  • latent heat flux(e)
  • corrected sensible heat flux(h)
  • bottom air temperature(tair_bot)
  • top air temperature(tair_top)
  • top relative humidity(hum_top)
  • top vapor pressure(vp_top)


Back To Table of Contents

DQRID : D040706.2
Start DateStart TimeEnd DateEnd Time
06/22/2004040006/23/20041650
Subject:
SGP/EBBR/E22 - Net Radiation Incorrect
DataStreams:sgp5ebbrE22.b1, sgp30ebbrE22.b1
Description:
Rain filled the bottom of the net radiometer with water, resulting
in very high net radiations.  Net radiation is incorrect during this period,
also causing sensible and latent heat fluxes to be incorrect.
Measurements:sgp5ebbrE22.b1:
  • specific humidity(q)

sgp30ebbrE22.b1:
  • corrected sensible heat flux(h)
  • specific humidity(q)
  • latent heat flux(e)


Back To Table of Contents

DQRID : D040706.3
Start DateStart TimeEnd DateEnd Time
06/10/2004060007/21/20041725
Subject:
SGP/EBBR/E27 - Loose Tair Left Connections
DataStreams:sgp5ebbrE27.b1, sgp15ebbrE27.b1, sgp30ebbrE27.b1
Description:
Tair left dropped out at times. When this occurred, the sensible and latent heat fluxes 
are incorrect.

Tightening of the electronic connections to the datalogging equipment
appears to have solved the problem.
Measurements:sgp5ebbrE27.b1:
  • bottom air temperature(tair_bot)
  • top air temperature(tair_top)

sgp30ebbrE27.b1:
  • bottom air temperature(tair_bot)
  • corrected sensible heat flux(h)
  • latent heat flux(e)
  • top air temperature(tair_top)
  • ratio of sensible/latent heat fluxes (Bowen ratio)(bowen)

sgp15ebbrE27.b1:
  • Left air temperature(tair_l)


Back To Table of Contents

DQRID : D040722.1
Start DateStart TimeEnd DateEnd Time
07/09/2004174508/04/20041915
Subject:
SGP/EBBR/E20 - Wind Direction Stuck at 100 Degrees
DataStreams:sgp5ebbrE20.b1, sgp15ebbrE20.b1, sgp30ebbrE20.b1
Description:
The wind direction sensor was stuck at about 100 degrees.  This did
not affect the primary measurements (net radiation, soil heat flow, sensible heat flux, 
latent heat flux).
Measurements:sgp30ebbrE20.b1:
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • wind direction (relative to true north)(wind_d)
  • Resultant wind speed(res_ws)

sgp15ebbrE20.b1:
  • Wind direction (relative to true north)(mv_wind_d)

sgp5ebbrE20.b1:
  • wind direction (relative to true north)(wind_d)
  • Resultant wind speed(res_ws)
  • standard deviation of wind direction (sigma theta)(sigma_wd)


Back To Table of Contents

DQRID : D040723.2
Start DateStart TimeEnd DateEnd Time
06/28/2004120006/29/20041530
Subject:
SGP/EBBR/E9 - net radiometer top dome broken, water in bottom dome
DataStreams:sgp5ebbrE9.b1, sgp30ebbrE9.b1
Description:
The Net radiometer top dome was broken.  Site Ops did not indicate that there
was water in the bottom dome, but the data suggests it.  Net radiation values during the 
period are incorrect.
Measurements:sgp5ebbrE9.b1:
  • specific humidity(q)

sgp30ebbrE9.b1:
  • latent heat flux(e)
  • corrected sensible heat flux(h)
  • specific humidity(q)


Back To Table of Contents

DQRID : D040723.3
Start DateStart TimeEnd DateEnd Time
07/01/2004133007/07/20041900
Subject:
SGP/EBBR/E22 - Water In Net Radiometer
DataStreams:sgp5ebbrE22.b1, sgp30ebbrE22.b1
Description:
Water entered the Net Radiometer through a cracked upper dome, causing the
net radiation values to be too large.  As a result, latent and sensible heat flux values 
are also incorrect.
Measurements:sgp5ebbrE22.b1:
  • specific humidity(q)

sgp30ebbrE22.b1:
  • corrected sensible heat flux(h)
  • specific humidity(q)
  • latent heat flux(e)


Back To Table of Contents

DQRID : D040813.2
Start DateStart TimeEnd DateEnd Time
08/03/2004030009/15/20042000
09/24/2004070009/29/20041800
Subject:
SGP/EBBR/E20 - AEM Failure
DataStreams:sgp5ebbrE20.b1, sgp15ebbrE20.b1, sgp30ebbrE20.b1
Description:
The AEM hung inbetween positions; home signals were zero.

The AEM fuse kept blowing, most likely because of worn
rails or sleeves.  This condition may reoccur.
Measurements:sgp30ebbrE20.b1:
  • bottom vapor pressure(vp_bot)
  • temperature of the top humidity sensor chamber(thum_top)
  • bottom relative humidity(hum_bot)
  • top air temperature(tair_top)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • ratio of sensible/latent heat fluxes (Bowen ratio)(bowen)
  • latent heat flux(e)
  • top relative humidity(hum_top)
  • corrected sensible heat flux(h)
  • top vapor pressure(vp_top)
  • bottom air temperature(tair_bot)

sgp15ebbrE20.b1:
  • Right air temperature(tair_r)
  • Left air temperature(tair_l)

sgp5ebbrE20.b1:
  • bottom relative humidity(hum_bot)
  • temperature of the top humidity sensor chamber(thum_top)
  • bottom vapor pressure(vp_bot)
  • top air temperature(tair_top)
  • bottom air temperature(tair_bot)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • top relative humidity(hum_top)
  • top vapor pressure(vp_top)


Back To Table of Contents

DQRID : D040813.3
Start DateStart TimeEnd DateEnd Time
07/21/2004170007/21/20041900
Subject:
SGP/EBBR/E27 - Data Missing or Incorrect During Battery Terminal Cleaning
DataStreams:sgp5ebbrE27.b1, sgp15ebbrE27.b1, sgp30ebbrE27.b1
Description:
The data is missing or incorrect during this period while the battery
terminals were being cleaned.
Measurements:sgp5ebbrE27.b1:
  • Resultant wind speed(res_ws)
  • specific humidity(q)
  • altitude above sea levelaltunits(alt)
  • bottom relative humidity(hum_bot)
  • Reference Thermistor Temperature(tref)
  • pressure at constant pressure surface(pres)
  • top relative humidity(hum_top)
  • north latitude for all the input platforms.(lat)
  • Time offset of tweaks from base_time(time_offset)
  • scalar wind speed(wind_s)
  • temperature of the top humidity sensor chamber(thum_top)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • wind direction (relative to true north)(wind_d)
  • Home signal(home)
  • top vapor pressure(vp_top)
  • bottom air temperature(tair_bot)
  • Time offset from midnight of date of file. For CO data, this is identical to
    time_offset and is included for compatibility.(time)
  • Time offset from base_time(base_time)
  • top air temperature(tair_top)
  • east longitude for all the input platforms.(lon)
  • bottom vapor pressure(vp_bot)
  • standard deviation of wind direction (sigma theta)(sigma_wd)

sgp30ebbrE27.b1:
  • 0-5 cm change in soil heat storage with time, site 2(ces1)
  • Reference Thermistor Temperature(tref)
  • temperature of the top humidity sensor chamber(thum_top)
  • Exchange mechanism position indicator (0 to 15 min)(home_15)
  • Soil moisture 5 (mass water/mass dry soil)(sm5)
  • specific humidity(q)
  • 5 cm soil heat flow corrected for soil moisture content, site 2(c_shf2)
  • Resultant wind speed(res_ws)
  • 5 cm soil heat flow, site 5(shf5)
  • Soil moisture 4 (mass water/mass dry soil)(sm4)
  • Soil moisture 1 (mass water/mass dry soil)(sm1)
  • 0-5 cm change in soil heat storage with time, site 2(ces2)
  • soil heat flow at the surface 5(g5)
  • soil heat flow at the surface 3(g3)
  • 5 cm soil heat flow corrected for soil moisture content, site 5(c_shf5)
  • Soil moisture 3 (mass water/mass dry soil)(sm3)
  • top relative humidity(hum_top)
  • soil heat flow at the surface 2(g2)
  • soil heat flow at the surface 1(g1)
  • top vapor pressure(vp_top)
  • Exchange mechanism position indicator (15 to 30 min)(home_30)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • bottom relative humidity(hum_bot)
  • bottom air temperature(tair_bot)
  • 0-5 cm integrated soil temperature, site 4(ts4)
  • 0-5 cm integrated soil temperature, site 2(ts1)
  • north latitude for all the input platforms.(lat)
  • soil heat flow at the surface 4(g4)
  • wind direction (relative to true north)(wind_d)
  • altitude above sea levelaltunits(alt)
  • Soil heat capacity 5(cs5)
  • Soil heat capacity 1(cs1)
  • Soil heat capacity 4(cs4)
  • 0-5 cm integrated soil temperature, site 5(ts5)
  • ratio of sensible/latent heat fluxes (Bowen ratio)(bowen)
  • latent heat flux(e)
  • Time offset from base_time(base_time)
  • pressure at constant pressure surface(pres)
  • 0-5 cm integrated soil temperature, site 3(ts3)
  • 0-5 cm integrated soil temperature, site 2(ts2)
  • 0-5 cm change in soil heat storage with time, site 5(ces5)
  • Soil heat capacity 2(cs2)
  • Soil heat capacity 3(cs3)
  • bottom vapor pressure(vp_bot)
  • east longitude for all the input platforms.(lon)
  • Time offset of tweaks from base_time(time_offset)
  • 5 cm soil heat flow corrected for soil moisture content, site 3(c_shf3)
  • 0-5 cm change in soil heat storage with time, site 4(ces4)
  • top air temperature(tair_top)
  • 0-5 cm change in soil heat storage with time, site 3(ces3)
  • 5 cm soil heat flow, site 2(shf2)
  • 5 cm soil heat flow corrected for soil moisture content, site 4(c_shf4)
  • 5 cm soil heat flow, site 3(shf3)
  • Soil moisture 2 (mass water/mass dry soil)(sm2)
  • scalar wind speed(wind_s)
  • 5 cm soil heat flow, site 4(shf4)
  • 5 cm soil heat flow corrected for soil moisture content, site 1(c_shf1)
  • 5 cm soil heat flow, site 1(shf1)
  • average surface soil heat flow at the surface(ave_shf)
  • corrected sensible heat flux(h)
  • temperature of the bottom humidity sensor chamber(thum_bot)

sgp15ebbrE27.b1:
  • Soil moisture 5(r_sm5)
  • Reference temperature(rr_tref)
  • Battery(bat)
  • Left air temperature(tair_l)
  • north latitude for all the input platforms.(lat)
  • Soil temperature 3(rr_ts3)
  • Temperature of left humidity sensor chamber(rr_thum_l)
  • Soil temperature 4(rr_ts4)
  • Soil moisture 2(r_sm2)
  • east longitude for all the input platforms.(lon)
  • scalar wind speed(wind_s)
  • Soil temperature 5(rr_ts5)
  • Right air temperature(tair_r)
  • Soil moisture 3(r_sm3)
  • Left relative humidity(mv_hum_l)
  • Time offset from base_time(base_time)
  • Soil moisture 4(r_sm4)
  • Time offset of tweaks from base_time(time_offset)
  • Soil heat flow 1(mv_hft1)
  • Net radiation(mv_q)
  • Soil heat flow 3(mv_hft3)
  • Soil heat flow 4(mv_hft4)
  • Soil heat flow 5(mv_hft5)
  • Right relative humidity(mv_hum_r)
  • Soil temperature 1(rr_ts1)
  • Atmospheric pressure(mv_pres)
  • Signature(signature)
  • altitude above sea levelaltunits(alt)
  • Temperature of right humidity sensor chamber(rr_thum_r)
  • Soil moisture 1(r_sm1)
  • Soil temperature 2(rr_ts2)
  • Wind direction (relative to true north)(mv_wind_d)
  • Soil heat flow 2(mv_hft2)
  • Home signal(mv_home)


Back To Table of Contents

DQRID : D040813.4
Start DateStart TimeEnd DateEnd Time
07/25/2004120007/28/20041500
Subject:
SGP/EBBR/E4 - Net Radiation Incorrect, Sensible and Latent Heat Fluxes Incorrect
DataStreams:sgp5ebbrE4.b1, sgp30ebbrE4.b1
Description:
The Net Radiometer domes were broken and rain entered, causing net radiation values to be 
too large during the period.
Measurements:sgp5ebbrE4.b1:
  • specific humidity(q)

sgp30ebbrE4.b1:
  • specific humidity(q)
  • corrected sensible heat flux(h)
  • latent heat flux(e)


Back To Table of Contents

DQRID : D040813.8
Start DateStart TimeEnd DateEnd Time
08/10/2004192508/24/20041820
Subject:
SGP/EBBR/E7 - Pressure Too High
DataStreams:sgp5ebbrE7.b1, sgp15ebbrE7.b1, sgp30ebbrE7.b1
Description:
When data collection resumed after a missing period, the barometer pressure
had become very high, 102 kPa, which was not correct.  This condition resulted
from an incorrect calibration being used. Sensible heat flux was overestimated 
by about 4% and latent heat flux underestimated by about 4% because of the 
high pressure readings.
Measurements:sgp15ebbrE7.b1:
  • Atmospheric pressure(mv_pres)

sgp30ebbrE7.b1:
  • ratio of sensible/latent heat fluxes (Bowen ratio)(bowen)
  • pressure at constant pressure surface(pres)
  • corrected sensible heat flux(h)
  • latent heat flux(e)

sgp5ebbrE7.b1:
  • pressure at constant pressure surface(pres)


Back To Table of Contents

DQRID : D040915.2
Start DateStart TimeEnd DateEnd Time
08/11/2004023008/11/20041824
Subject:
SGP/EBBR/E13 - Net Radiation Incorrect, Fluxes Incorrect
DataStreams:sgp5ebbrE13.b1, sgp15ebbrE13.b1, sgp30ebbrE13.b1
Description:
Rain entered the net radiometer through a crack in the upper dome and
settled in the bottom dome.  This caused too large net radiation measurements
during the following daylight hours, until the domes were replaced and dried out the same 
day.
Measurements:sgp15ebbrE13.b1:
  • Net radiation(mv_q)

sgp5ebbrE13.b1:
  • specific humidity(q)

sgp30ebbrE13.b1:
  • specific humidity(q)
  • latent heat flux(e)
  • corrected sensible heat flux(h)


Back To Table of Contents

DQRID : D040915.5
Start DateStart TimeEnd DateEnd Time
08/30/2004120009/07/20041730
Subject:
SGP/EBBR/E8 - Net Radiation Incorrect, Fluxes Incorrect
DataStreams:sgp5ebbrE8.b1, sgp15ebbrE8.b1, sgp30ebbrE8.b1
Description:
The net radiometer dome was broken and water entered the botom dome,
causing net radiation measurements, and thus sensible and latent heat 
flux measurements, to be incorrect.
Measurements:sgp30ebbrE8.b1:
  • latent heat flux(e)
  • specific humidity(q)
  • corrected sensible heat flux(h)

sgp5ebbrE8.b1:
  • specific humidity(q)

sgp15ebbrE8.b1:
  • Net radiation(mv_q)


Back To Table of Contents

DQRID : D040915.6
Start DateStart TimeEnd DateEnd Time
09/08/2004120009/15/20041930
Subject:
SGP/EBBR/E13 - AEM Failure, Fluxes Incorrect
DataStreams:sgp5ebbrE13.b1, sgp15ebbrE13.b1, sgp30ebbrE13.b1
Description:
The AEM failed.  Sensible and latent heat fluxes were incorrect, as well as gradient 
measurements.
Measurements:sgp15ebbrE13.b1:
  • Left air temperature(tair_l)
  • Right air temperature(tair_r)

sgp5ebbrE13.b1:
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • top vapor pressure(vp_top)
  • top air temperature(tair_top)
  • temperature of the top humidity sensor chamber(thum_top)
  • bottom vapor pressure(vp_bot)
  • bottom relative humidity(hum_bot)
  • top relative humidity(hum_top)
  • bottom air temperature(tair_bot)

sgp30ebbrE13.b1:
  • bottom relative humidity(hum_bot)
  • ratio of sensible/latent heat fluxes (Bowen ratio)(bowen)
  • bottom vapor pressure(vp_bot)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • temperature of the top humidity sensor chamber(thum_top)
  • latent heat flux(e)
  • corrected sensible heat flux(h)
  • bottom air temperature(tair_bot)
  • top air temperature(tair_top)
  • top relative humidity(hum_top)
  • top vapor pressure(vp_top)


Back To Table of Contents

DQRID : D040915.7
Start DateStart TimeEnd DateEnd Time
09/08/2004213009/15/20041930
Subject:
SGP/EBBR/E20 - Soil Heat Flow #3 and Soil Temperature #3 Incorrect
DataStreams:sgp15ebbrE20.b1, sgp30ebbrE20.b1
Description:
Measurements:sgp30ebbrE20.b1:
  • 0-5 cm change in soil heat storage with time, site 3(ces3)
  • 0-5 cm integrated soil temperature, site 3(ts3)
  • average surface soil heat flow at the surface(ave_shf)
  • 5 cm soil heat flow, site 3(shf3)
  • latent heat flux(e)
  • soil heat flow at the surface 3(g3)
  • corrected sensible heat flux(h)
  • 5 cm soil heat flow corrected for soil moisture content, site 3(c_shf3)

sgp15ebbrE20.b1:
  • Soil heat flow 3(mv_hft3)
  • Soil temperature 3(rr_ts3)


Back To Table of Contents

DQRID : D041004.4
Start DateStart TimeEnd DateEnd Time
10/11/2001150009/28/20041509
Subject:
SGP/EBBR/E15 - Soil Moisture Coefficients Incorrect
DataStreams:sgp30ebbrE15.b1
Description:
The soil Moisture coefficients used for E15 were incorrect from the time of
installation of the system in program version 8.  On 9 July 02 parameter 4  (an offset 
value) of program step 136 was changed from 9.5264 to the correct value 0.95264 (this error 
had been made by the vendor). The error masked the real problem (wrong soil type) and 
after 9 July 02 resulted in very low soil moisture measurements.  The coefficients used were 
for coarse sand.  On 28 Sep 04 I visited the E15 site and found the soil type a fine 
sandy clay or fine sandy loam.  I changed the coefficients  at 1509 GMT to those for a very 
fine sandy loam; this produced reasonable soil moistures for the soil type.

The old coefficients in parameters 4 through 9 for step 136 of the program were: 0.95264, 
-6.7859, 36.224, -58.619, 25.073, 4.2278

The new coefficients are: 10.241, -27.943, 49.523, -12.648, -52.643, 38.054
Measurements:sgp30ebbrE15.b1:
  • Soil moisture 3 (mass water/mass dry soil)(sm3)
  • soil heat flow at the surface 3(g3)
  • 0-5 cm change in soil heat storage with time, site 3(ces3)
  • 0-5 cm change in soil heat storage with time, site 4(ces4)
  • Soil moisture 2 (mass water/mass dry soil)(sm2)
  • soil heat flow at the surface 2(g2)
  • latent heat flux(e)
  • Soil moisture 1 (mass water/mass dry soil)(sm1)
  • 0-5 cm change in soil heat storage with time, site 5(ces5)
  • soil heat flow at the surface 1(g1)
  • 0-5 cm change in soil heat storage with time, site 2(ces1)
  • soil heat flow at the surface 5(g5)
  • average surface soil heat flow at the surface(ave_shf)
  • Soil moisture 4 (mass water/mass dry soil)(sm4)
  • 0-5 cm change in soil heat storage with time, site 2(ces2)
  • corrected sensible heat flux(h)
  • soil heat flow at the surface 4(g4)
  • Soil moisture 5 (mass water/mass dry soil)(sm5)


Back To Table of Contents

DQRID : D041005.3
Start DateStart TimeEnd DateEnd Time
08/04/2004170508/10/20041925
Subject:
SGP/EBBR/E7 - Data Missing
DataStreams:sgp5ebbrE7.b1, sgp15ebbrE7.b1, sgp30ebbrE7.b1
Description:
A power outage resulted in missing data for the indicated period.
Measurements:sgp15ebbrE7.b1:
  • east longitude for all the input platforms.(lon)
  • Net radiation(mv_q)
  • Soil moisture 2(r_sm2)
  • Temperature of left humidity sensor chamber(rr_thum_l)
  • Soil moisture 3(r_sm3)
  • Soil heat flow 3(mv_hft3)
  • Soil heat flow 4(mv_hft4)
  • north latitude for all the input platforms.(lat)
  • Soil moisture 5(r_sm5)
  • Home signal(mv_home)
  • Wind direction (relative to true north)(mv_wind_d)
  • Soil heat flow 5(mv_hft5)
  • Reference temperature(rr_tref)
  • Time offset from base_time(base_time)
  • Left relative humidity(mv_hum_l)
  • scalar wind speed(wind_s)
  • Battery(bat)
  • Soil heat flow 1(mv_hft1)
  • Right relative humidity(mv_hum_r)
  • Time offset of tweaks from base_time(time_offset)
  • Temperature of right humidity sensor chamber(rr_thum_r)
  • altitude above sea levelaltunits(alt)
  • Soil temperature 4(rr_ts4)
  • Left air temperature(tair_l)
  • Soil temperature 3(rr_ts3)
  • Soil moisture 4(r_sm4)
  • Soil temperature 5(rr_ts5)
  • Soil moisture 1(r_sm1)
  • Soil heat flow 2(mv_hft2)
  • Right air temperature(tair_r)
  • Signature(signature)
  • Soil temperature 1(rr_ts1)
  • Atmospheric pressure(mv_pres)
  • Soil temperature 2(rr_ts2)

sgp5ebbrE7.b1:
  • Time offset from base_time(base_time)
  • north latitude for all the input platforms.(lat)
  • specific humidity(q)
  • top relative humidity(hum_top)
  • east longitude for all the input platforms.(lon)
  • bottom vapor pressure(vp_bot)
  • Time offset of tweaks from base_time(time_offset)
  • pressure at constant pressure surface(pres)
  • bottom relative humidity(hum_bot)
  • top vapor pressure(vp_top)
  • temperature of the top humidity sensor chamber(thum_top)
  • Resultant wind speed(res_ws)
  • bottom air temperature(tair_bot)
  • Home signal(home)
  • top air temperature(tair_top)
  • wind direction (relative to true north)(wind_d)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • scalar wind speed(wind_s)
  • altitude above sea levelaltunits(alt)
  • Time offset from midnight of date of file. For CO data, this is identical to
    time_offset and is included for compatibility.(time)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • Reference Thermistor Temperature(tref)

sgp30ebbrE7.b1:
  • Soil moisture 3 (mass water/mass dry soil)(sm3)
  • east longitude for all the input platforms.(lon)
  • Soil moisture 2 (mass water/mass dry soil)(sm2)
  • wind direction (relative to true north)(wind_d)
  • bottom air temperature(tair_bot)
  • Exchange mechanism position indicator (0 to 15 min)(home_15)
  • Soil moisture 4 (mass water/mass dry soil)(sm4)
  • average surface soil heat flow at the surface(ave_shf)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • 5 cm soil heat flow, site 4(shf4)
  • 0-5 cm integrated soil temperature, site 4(ts4)
  • Soil moisture 5 (mass water/mass dry soil)(sm5)
  • Soil heat capacity 2(cs2)
  • 5 cm soil heat flow, site 3(shf3)
  • 0-5 cm integrated soil temperature, site 5(ts5)
  • top air temperature(tair_top)
  • Soil moisture 1 (mass water/mass dry soil)(sm1)
  • 0-5 cm change in soil heat storage with time, site 2(ces2)
  • 0-5 cm integrated soil temperature, site 2(ts1)
  • top vapor pressure(vp_top)
  • scalar wind speed(wind_s)
  • latent heat flux(e)
  • Resultant wind speed(res_ws)
  • north latitude for all the input platforms.(lat)
  • ratio of sensible/latent heat fluxes (Bowen ratio)(bowen)
  • bottom vapor pressure(vp_bot)
  • top relative humidity(hum_top)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • soil heat flow at the surface 3(g3)
  • 5 cm soil heat flow, site 5(shf5)
  • 5 cm soil heat flow corrected for soil moisture content, site 3(c_shf3)
  • Time offset from base_time(base_time)
  • soil heat flow at the surface 2(g2)
  • Soil heat capacity 1(cs1)
  • bottom relative humidity(hum_bot)
  • Reference Thermistor Temperature(tref)
  • 0-5 cm integrated soil temperature, site 2(ts2)
  • corrected sensible heat flux(h)
  • Soil heat capacity 4(cs4)
  • temperature of the top humidity sensor chamber(thum_top)
  • Soil heat capacity 5(cs5)
  • pressure at constant pressure surface(pres)
  • 0-5 cm change in soil heat storage with time, site 5(ces5)
  • Time offset of tweaks from base_time(time_offset)
  • Exchange mechanism position indicator (15 to 30 min)(home_30)
  • 5 cm soil heat flow corrected for soil moisture content, site 5(c_shf5)
  • 0-5 cm change in soil heat storage with time, site 4(ces4)
  • specific humidity(q)
  • 0-5 cm change in soil heat storage with time, site 2(ces1)
  • 0-5 cm integrated soil temperature, site 3(ts3)
  • soil heat flow at the surface 1(g1)
  • 5 cm soil heat flow corrected for soil moisture content, site 1(c_shf1)
  • soil heat flow at the surface 4(g4)
  • Soil heat capacity 3(cs3)
  • altitude above sea levelaltunits(alt)
  • 0-5 cm change in soil heat storage with time, site 3(ces3)
  • 5 cm soil heat flow corrected for soil moisture content, site 2(c_shf2)
  • soil heat flow at the surface 5(g5)
  • 5 cm soil heat flow corrected for soil moisture content, site 4(c_shf4)
  • 5 cm soil heat flow, site 2(shf2)
  • 5 cm soil heat flow, site 1(shf1)


Back To Table of Contents

DQRID : D041006.3
Start DateStart TimeEnd DateEnd Time
09/15/2004193009/15/20042030
Subject:
SGP/EBBR/E20  - All Soil Measurements Incorrect
DataStreams:sgp15ebbrE20.b1, sgp30ebbrE20.b1
Description:
All soil measurements were incorrect during the replacement of soil heat flow #3 and soil 
temperature #3.
Measurements:sgp30ebbrE20.b1:
  • 5 cm soil heat flow, site 2(shf2)
  • soil heat flow at the surface 1(g1)
  • 5 cm soil heat flow, site 3(shf3)
  • 0-5 cm change in soil heat storage with time, site 4(ces4)
  • 0-5 cm integrated soil temperature, site 2(ts1)
  • Soil moisture 5 (mass water/mass dry soil)(sm5)
  • 5 cm soil heat flow corrected for soil moisture content, site 5(c_shf5)
  • 0-5 cm change in soil heat storage with time, site 2(ces2)
  • 0-5 cm integrated soil temperature, site 2(ts2)
  • Soil moisture 4 (mass water/mass dry soil)(sm4)
  • 0-5 cm change in soil heat storage with time, site 5(ces5)
  • soil heat flow at the surface 5(g5)
  • latent heat flux(e)
  • corrected sensible heat flux(h)
  • Soil heat capacity 3(cs3)
  • 5 cm soil heat flow, site 5(shf5)
  • average surface soil heat flow at the surface(ave_shf)
  • soil heat flow at the surface 4(g4)
  • 0-5 cm change in soil heat storage with time, site 2(ces1)
  • Soil heat capacity 1(cs1)
  • soil heat flow at the surface 2(g2)
  • Soil moisture 2 (mass water/mass dry soil)(sm2)
  • Soil heat capacity 4(cs4)
  • 5 cm soil heat flow, site 4(shf4)
  • 0-5 cm change in soil heat storage with time, site 3(ces3)
  • 0-5 cm integrated soil temperature, site 3(ts3)
  • Soil moisture 3 (mass water/mass dry soil)(sm3)
  • 5 cm soil heat flow, site 1(shf1)
  • 0-5 cm integrated soil temperature, site 4(ts4)
  • soil heat flow at the surface 3(g3)
  • 5 cm soil heat flow corrected for soil moisture content, site 1(c_shf1)
  • Soil heat capacity 5(cs5)
  • 5 cm soil heat flow corrected for soil moisture content, site 4(c_shf4)
  • 0-5 cm integrated soil temperature, site 5(ts5)
  • 5 cm soil heat flow corrected for soil moisture content, site 2(c_shf2)
  • Soil heat capacity 2(cs2)
  • Soil moisture 1 (mass water/mass dry soil)(sm1)
  • 5 cm soil heat flow corrected for soil moisture content, site 3(c_shf3)

sgp15ebbrE20.b1:
  • Soil heat flow 4(mv_hft4)
  • Soil temperature 2(rr_ts2)
  • Soil heat flow 5(mv_hft5)
  • Soil moisture 3(r_sm3)
  • Soil moisture 4(r_sm4)
  • Soil moisture 5(r_sm5)
  • Soil heat flow 1(mv_hft1)
  • Soil heat flow 2(mv_hft2)
  • Soil temperature 3(rr_ts3)
  • Soil temperature 5(rr_ts5)
  • Soil temperature 4(rr_ts4)
  • Soil heat flow 3(mv_hft3)
  • Soil temperature 1(rr_ts1)
  • Soil moisture 2(r_sm2)
  • Soil moisture 1(r_sm1)


Back To Table of Contents

DQRID : D041222.10
Start DateStart TimeEnd DateEnd Time
10/05/2004163010/05/20041700
Subject:
SGP/EBBR/E9 - 6 Month Checks
DataStreams:sgp5ebbrE9.b1, sgp15ebbrE9.b1, sgp30ebbrE9.b1
Description:
Many measurements were incorrect while the AEM was positioned with both aspirators at the 
same height for comparison checks.
Measurements:sgp15ebbrE9.b1:
  • Right air temperature(tair_r)
  • Left relative humidity(mv_hum_l)
  • Temperature of left humidity sensor chamber(rr_thum_l)
  • Temperature of right humidity sensor chamber(rr_thum_r)
  • Right relative humidity(mv_hum_r)
  • Left air temperature(tair_l)

sgp5ebbrE9.b1:
  • top air temperature(tair_top)
  • top vapor pressure(vp_top)
  • bottom vapor pressure(vp_bot)
  • temperature of the top humidity sensor chamber(thum_top)
  • bottom relative humidity(hum_bot)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • bottom air temperature(tair_bot)
  • top relative humidity(hum_top)

sgp30ebbrE9.b1:
  • bottom vapor pressure(vp_bot)
  • top relative humidity(hum_top)
  • corrected sensible heat flux(h)
  • top vapor pressure(vp_top)
  • ratio of sensible/latent heat fluxes (Bowen ratio)(bowen)
  • top air temperature(tair_top)
  • bottom air temperature(tair_bot)
  • bottom relative humidity(hum_bot)
  • latent heat flux(e)
  • temperature of the top humidity sensor chamber(thum_top)
  • temperature of the bottom humidity sensor chamber(thum_bot)


Back To Table of Contents

DQRID : D041222.12
Start DateStart TimeEnd DateEnd Time
10/28/2004183010/28/20041900
Subject:
SGP/EBBR/E13 - 6 Month Checks
DataStreams:sgp5ebbrE13.b1, sgp15ebbrE13.b1, sgp30ebbrE13.b1
Description:
Many measurements were incorrect while the AEM was positioned with both aspirators at the 
same height for comparison checks.
Measurements:sgp15ebbrE13.b1:
  • Temperature of left humidity sensor chamber(rr_thum_l)
  • Left air temperature(tair_l)
  • Temperature of right humidity sensor chamber(rr_thum_r)
  • Right air temperature(tair_r)
  • Left relative humidity(mv_hum_l)
  • Right relative humidity(mv_hum_r)

sgp5ebbrE13.b1:
  • top air temperature(tair_top)
  • temperature of the top humidity sensor chamber(thum_top)
  • bottom relative humidity(hum_bot)
  • bottom vapor pressure(vp_bot)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • top vapor pressure(vp_top)
  • top relative humidity(hum_top)
  • bottom air temperature(tair_bot)

sgp30ebbrE13.b1:
  • bottom relative humidity(hum_bot)
  • ratio of sensible/latent heat fluxes (Bowen ratio)(bowen)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • corrected sensible heat flux(h)
  • top relative humidity(hum_top)
  • top air temperature(tair_top)
  • top vapor pressure(vp_top)
  • bottom vapor pressure(vp_bot)
  • temperature of the top humidity sensor chamber(thum_top)
  • latent heat flux(e)
  • bottom air temperature(tair_bot)


Back To Table of Contents

DQRID : D041222.13
Start DateStart TimeEnd DateEnd Time
10/26/2004163010/26/20041700
Subject:
SGP/EBBR/E15 - 6 Month Checks
DataStreams:sgp5ebbrE15.b1, sgp15ebbrE15.b1, sgp30ebbrE15.b1
Description:
Many measurements were incorrect while the AEM was positioned with both aspirators at the 
same height for comparison checks.
Measurements:sgp15ebbrE15.b1:
  • Temperature of left humidity sensor chamber(rr_thum_l)
  • Left relative humidity(mv_hum_l)
  • Left air temperature(tair_l)
  • Temperature of right humidity sensor chamber(rr_thum_r)
  • Right relative humidity(mv_hum_r)
  • Right air temperature(tair_r)

sgp30ebbrE15.b1:
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • bottom vapor pressure(vp_bot)
  • ratio of sensible/latent heat fluxes (Bowen ratio)(bowen)
  • bottom air temperature(tair_bot)
  • latent heat flux(e)
  • temperature of the top humidity sensor chamber(thum_top)
  • top air temperature(tair_top)
  • top vapor pressure(vp_top)
  • top relative humidity(hum_top)
  • bottom relative humidity(hum_bot)
  • corrected sensible heat flux(h)

sgp5ebbrE15.b1:
  • bottom vapor pressure(vp_bot)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • bottom air temperature(tair_bot)
  • top vapor pressure(vp_top)
  • top air temperature(tair_top)
  • bottom relative humidity(hum_bot)
  • top relative humidity(hum_top)
  • temperature of the top humidity sensor chamber(thum_top)


Back To Table of Contents

DQRID : D041222.16
Start DateStart TimeEnd DateEnd Time
09/29/2004173009/29/20041800
Subject:
SGP/EBBR/E20 - 6 Month Checks
DataStreams:sgp5ebbrE20.b1, sgp15ebbrE20.b1, sgp30ebbrE20.b1
Description:
Many measurements were incorrect while the AEM was positioned with both aspirators at the 
same height for comparison checks.
Measurements:sgp30ebbrE20.b1:
  • bottom relative humidity(hum_bot)
  • top relative humidity(hum_top)
  • top vapor pressure(vp_top)
  • bottom vapor pressure(vp_bot)
  • temperature of the top humidity sensor chamber(thum_top)
  • top air temperature(tair_top)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • ratio of sensible/latent heat fluxes (Bowen ratio)(bowen)
  • latent heat flux(e)
  • corrected sensible heat flux(h)
  • bottom air temperature(tair_bot)

sgp15ebbrE20.b1:
  • Left relative humidity(mv_hum_l)
  • Temperature of left humidity sensor chamber(rr_thum_l)
  • Temperature of right humidity sensor chamber(rr_thum_r)
  • Left air temperature(tair_l)
  • Right air temperature(tair_r)
  • Right relative humidity(mv_hum_r)

sgp5ebbrE20.b1:
  • temperature of the top humidity sensor chamber(thum_top)
  • bottom air temperature(tair_bot)
  • top relative humidity(hum_top)
  • bottom relative humidity(hum_bot)
  • bottom vapor pressure(vp_bot)
  • top air temperature(tair_top)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • top vapor pressure(vp_top)


Back To Table of Contents

DQRID : D041222.17
Start DateStart TimeEnd DateEnd Time
10/27/2004170010/27/20041730
Subject:
SGP/EBBR/E22 - 6 Month Checks
DataStreams:sgp5ebbrE22.b1, sgp15ebbrE22.b1, sgp30ebbrE22.b1
Description:
Many measurements were incorrect while the AEM was positioned with both aspirators at the 
same height for comparison checks.
Measurements:sgp5ebbrE22.b1:
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • top relative humidity(hum_top)
  • temperature of the top humidity sensor chamber(thum_top)
  • bottom relative humidity(hum_bot)
  • top air temperature(tair_top)
  • bottom vapor pressure(vp_bot)
  • bottom air temperature(tair_bot)
  • top vapor pressure(vp_top)

sgp30ebbrE22.b1:
  • temperature of the top humidity sensor chamber(thum_top)
  • latent heat flux(e)
  • bottom air temperature(tair_bot)
  • top relative humidity(hum_top)
  • corrected sensible heat flux(h)
  • bottom vapor pressure(vp_bot)
  • ratio of sensible/latent heat fluxes (Bowen ratio)(bowen)
  • bottom relative humidity(hum_bot)
  • top vapor pressure(vp_top)
  • top air temperature(tair_top)
  • temperature of the bottom humidity sensor chamber(thum_bot)

sgp15ebbrE22.b1:
  • Right relative humidity(mv_hum_r)
  • Left air temperature(tair_l)
  • Left relative humidity(mv_hum_l)
  • Temperature of right humidity sensor chamber(rr_thum_r)
  • Right air temperature(tair_r)
  • Temperature of left humidity sensor chamber(rr_thum_l)


Back To Table of Contents

DQRID : D041222.19
Start DateStart TimeEnd DateEnd Time
09/29/2004200009/29/20042030
Subject:
SGP/EBBR/E27 - 6 Month Checks
DataStreams:sgp5ebbrE27.b1, sgp15ebbrE27.b1, sgp30ebbrE27.b1
Description:
Many measurements were incorrect while the AEM was positioned with both aspirators at the 
same height for comparison checks.
Measurements:sgp5ebbrE27.b1:
  • bottom relative humidity(hum_bot)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • top air temperature(tair_top)
  • top relative humidity(hum_top)
  • bottom vapor pressure(vp_bot)
  • top vapor pressure(vp_top)
  • bottom air temperature(tair_bot)
  • temperature of the top humidity sensor chamber(thum_top)

sgp30ebbrE27.b1:
  • temperature of the top humidity sensor chamber(thum_top)
  • ratio of sensible/latent heat fluxes (Bowen ratio)(bowen)
  • top air temperature(tair_top)
  • latent heat flux(e)
  • top vapor pressure(vp_top)
  • bottom relative humidity(hum_bot)
  • bottom vapor pressure(vp_bot)
  • bottom air temperature(tair_bot)
  • corrected sensible heat flux(h)
  • top relative humidity(hum_top)
  • temperature of the bottom humidity sensor chamber(thum_bot)

sgp15ebbrE27.b1:
  • Right air temperature(tair_r)
  • Temperature of right humidity sensor chamber(rr_thum_r)
  • Left air temperature(tair_l)
  • Left relative humidity(mv_hum_l)
  • Right relative humidity(mv_hum_r)
  • Temperature of left humidity sensor chamber(rr_thum_l)


Back To Table of Contents

DQRID : D041222.3
Start DateStart TimeEnd DateEnd Time
11/02/2004133003/02/20051930
Subject:
SGP/EBBR/E20 - Soil Moisture #4 and Soil Temperature #4 Incorrect
DataStreams:sgp15ebbrE20.b1, sgp30ebbrE20.b1
Description:
Failures of a multiplexer channel and a J-panel channel caused soil temperature #4 and 
soil moisture #4 to spike and drift at times.  Replacement of the failed equipment solved 
the problem.
Measurements:sgp30ebbrE20.b1:
  • Soil moisture 4 (mass water/mass dry soil)(sm4)
  • 5 cm soil heat flow corrected for soil moisture content, site 4(c_shf4)
  • Soil heat capacity 4(cs4)
  • average surface soil heat flow at the surface(ave_shf)
  • latent heat flux(e)
  • soil heat flow at the surface 4(g4)
  • 0-5 cm change in soil heat storage with time, site 4(ces4)
  • 0-5 cm integrated soil temperature, site 4(ts4)
  • corrected sensible heat flux(h)

sgp15ebbrE20.b1:
  • Soil temperature 4(rr_ts4)
  • Soil moisture 4(r_sm4)


Back To Table of Contents

DQRID : D041222.7
Start DateStart TimeEnd DateEnd Time
10/20/2004160010/20/20041630
Subject:
SGP/EBBR/E4 - 6 Month Checks
DataStreams:sgp5ebbrE4.b1, sgp15ebbrE4.b1, sgp30ebbrE4.b1
Description:
Many measurements were incorrect while the AEM was positioned with both aspirators at the 
same height for comparison checks.
Measurements:sgp5ebbrE4.b1:
  • bottom vapor pressure(vp_bot)
  • bottom relative humidity(hum_bot)
  • top vapor pressure(vp_top)
  • temperature of the top humidity sensor chamber(thum_top)
  • bottom air temperature(tair_bot)
  • top air temperature(tair_top)
  • top relative humidity(hum_top)
  • temperature of the bottom humidity sensor chamber(thum_bot)

sgp30ebbrE4.b1:
  • ratio of sensible/latent heat fluxes (Bowen ratio)(bowen)
  • bottom relative humidity(hum_bot)
  • latent heat flux(e)
  • bottom air temperature(tair_bot)
  • bottom vapor pressure(vp_bot)
  • top relative humidity(hum_top)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • temperature of the top humidity sensor chamber(thum_top)
  • top vapor pressure(vp_top)
  • corrected sensible heat flux(h)
  • top air temperature(tair_top)

sgp15ebbrE4.b1:
  • Left air temperature(tair_l)
  • Temperature of left humidity sensor chamber(rr_thum_l)
  • Temperature of right humidity sensor chamber(rr_thum_r)
  • Right relative humidity(mv_hum_r)
  • Left relative humidity(mv_hum_l)
  • Right air temperature(tair_r)


Back To Table of Contents

DQRID : D041222.8
Start DateStart TimeEnd DateEnd Time
10/05/2004200010/05/20042030
Subject:
SGP/EBBR/E7 - 6 Month Checks
DataStreams:sgp5ebbrE7.b1, sgp15ebbrE7.b1, sgp30ebbrE7.b1
Description:
Many measurements were incorrect while the AEM was positioned with both aspirators at the 
same height for comparison checks.
Measurements:sgp15ebbrE7.b1:
  • Temperature of left humidity sensor chamber(rr_thum_l)
  • Right relative humidity(mv_hum_r)
  • Temperature of right humidity sensor chamber(rr_thum_r)
  • Right air temperature(tair_r)
  • Left relative humidity(mv_hum_l)
  • Left air temperature(tair_l)

sgp30ebbrE7.b1:
  • top relative humidity(hum_top)
  • bottom vapor pressure(vp_bot)
  • ratio of sensible/latent heat fluxes (Bowen ratio)(bowen)
  • top air temperature(tair_top)
  • bottom air temperature(tair_bot)
  • bottom relative humidity(hum_bot)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • top vapor pressure(vp_top)
  • corrected sensible heat flux(h)
  • latent heat flux(e)
  • temperature of the top humidity sensor chamber(thum_top)

sgp5ebbrE7.b1:
  • top relative humidity(hum_top)
  • temperature of the top humidity sensor chamber(thum_top)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • bottom vapor pressure(vp_bot)
  • bottom air temperature(tair_bot)
  • bottom relative humidity(hum_bot)
  • top vapor pressure(vp_top)
  • top air temperature(tair_top)


Back To Table of Contents

DQRID : D041222.9
Start DateStart TimeEnd DateEnd Time
10/19/2004173010/19/20041800
Subject:
SGP/EBBR/E8 - 6 Month Checks
DataStreams:sgp5ebbrE8.b1, sgp15ebbrE8.b1, sgp30ebbrE8.b1
Description:
Many measurements were incorrect while the AEM was positioned with both aspirators at the 
same height for comparison checks.
Measurements:sgp30ebbrE8.b1:
  • bottom air temperature(tair_bot)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • top vapor pressure(vp_top)
  • top relative humidity(hum_top)
  • bottom vapor pressure(vp_bot)
  • latent heat flux(e)
  • corrected sensible heat flux(h)
  • bottom relative humidity(hum_bot)
  • ratio of sensible/latent heat fluxes (Bowen ratio)(bowen)
  • top air temperature(tair_top)
  • temperature of the top humidity sensor chamber(thum_top)

sgp5ebbrE8.b1:
  • temperature of the top humidity sensor chamber(thum_top)
  • bottom air temperature(tair_bot)
  • bottom vapor pressure(vp_bot)
  • bottom relative humidity(hum_bot)
  • top air temperature(tair_top)
  • top relative humidity(hum_top)
  • top vapor pressure(vp_top)
  • temperature of the bottom humidity sensor chamber(thum_bot)

sgp15ebbrE8.b1:
  • Temperature of left humidity sensor chamber(rr_thum_l)
  • Right air temperature(tair_r)
  • Right relative humidity(mv_hum_r)
  • Left air temperature(tair_l)
  • Temperature of right humidity sensor chamber(rr_thum_r)
  • Left relative humidity(mv_hum_l)


Back To Table of Contents

DQRID : D041223.1
Start DateStart TimeEnd DateEnd Time
11/26/2004210012/08/20042100
Subject:
SGP/EBBR/E20 - Soil Heat Flow #4 Incorrect
DataStreams:sgp15ebbrE20.b1, sgp30ebbrE20.b1
Description:
Soil Heat Flow #4 was missing or offscale and therefore incorrect during the stated 
period.
Measurements:sgp30ebbrE20.b1:
  • 5 cm soil heat flow, site 4(shf4)
  • 5 cm soil heat flow corrected for soil moisture content, site 4(c_shf4)
  • average surface soil heat flow at the surface(ave_shf)
  • latent heat flux(e)
  • soil heat flow at the surface 4(g4)
  • corrected sensible heat flux(h)

sgp15ebbrE20.b1:
  • Soil heat flow 4(mv_hft4)


Back To Table of Contents

DQRID : D050113.2
Start DateStart TimeEnd DateEnd Time
12/01/2004083001/31/20051400
Subject:
SGP/EBBR/E9 - Wind Speed Threshhold Low
DataStreams:sgp5ebbrE9.b1, sgp15ebbrE9.b1, sgp30ebbrE9.b1
Description:
When the wind speed is very low, the anemometer cups stop turning.  Wind
speeds above the threshhold may be underestimated.
Measurements:sgp15ebbrE9.b1:
  • scalar wind speed(wind_s)

sgp5ebbrE9.b1:
  • scalar wind speed(wind_s)
  • Resultant wind speed(res_ws)

sgp30ebbrE9.b1:
  • scalar wind speed(wind_s)
  • Resultant wind speed(res_ws)


Back To Table of Contents

DQRID : D050206.10
Start DateStart TimeEnd DateEnd Time
01/05/2005051001/08/20051745
01/11/2005044501/12/20051310
Subject:
SGP/EBBR/E13  - Wind Speed Frozen Stopped By Ice Storm
DataStreams:sgp5ebbrE13.b1, sgp15ebbrE13.b1, sgp30ebbrE13.b1
Description:
An ice storm froze the wind speed sensor to a stopped condition.

The wind speed and residual wind speed measurements are incorrect.

This sensor failure does not affect the sensible and latent heat fluxes.
Measurements:sgp15ebbrE13.b1:
  • scalar wind speed(wind_s)

sgp5ebbrE13.b1:
  • Resultant wind speed(res_ws)
  • scalar wind speed(wind_s)

sgp30ebbrE13.b1:
  • scalar wind speed(wind_s)
  • Resultant wind speed(res_ws)


Back To Table of Contents

DQRID : D050206.11
Start DateStart TimeEnd DateEnd Time
01/04/2005101001/05/20050200
Subject:
SGP/EBBR/E15  - Wind Speed Frozen Stopped By Ice Storm
DataStreams:sgp5ebbrE15.b1, sgp15ebbrE15.b1, sgp30ebbrE15.b1
Description:
An ice storm froze the wind speed sensor to a stopped condition.

The wind speed and residual wind speed measurements are incorrect.

This sensor failure does not affect the sensible and latent heat fluxes.
Measurements:sgp15ebbrE15.b1:
  • scalar wind speed(wind_s)

sgp30ebbrE15.b1:
  • scalar wind speed(wind_s)
  • Resultant wind speed(res_ws)

sgp5ebbrE15.b1:
  • scalar wind speed(wind_s)
  • Resultant wind speed(res_ws)


Back To Table of Contents

DQRID : D050206.14
Start DateStart TimeEnd DateEnd Time
01/05/2005142001/07/20051650
Subject:
SGP/EBBR/E20  - Wind Speed Frozen Stopped By Ice Storm
DataStreams:sgp5ebbrE20.b1, sgp15ebbrE20.b1, sgp30ebbrE20.b1
Description:
An ice storm froze the wind speed sensor to a stopped condition.

The wind speed and residual wind speed measurements are incorrect.

This sensor failure does not affect the sensible and latent heat fluxes.
Measurements:sgp30ebbrE20.b1:
  • Resultant wind speed(res_ws)
  • scalar wind speed(wind_s)

sgp15ebbrE20.b1:
  • scalar wind speed(wind_s)

sgp5ebbrE20.b1:
  • Resultant wind speed(res_ws)
  • scalar wind speed(wind_s)


Back To Table of Contents

DQRID : D050206.15
Start DateStart TimeEnd DateEnd Time
01/05/2005084501/07/20051555
Subject:
SGP/EBBR/E22  - Wind Speed Frozen Stopped By Ice Storm
DataStreams:sgp5ebbrE22.b1, sgp15ebbrE22.b1, sgp30ebbrE22.b1
Description:
An ice storm froze the wind speed sensor to a stopped condition.

The wind speed and residual wind speed measurements are incorrect.

This sensor failure does not affect the sensible and latent heat fluxes.
Measurements:sgp30ebbrE22.b1:
  • scalar wind speed(wind_s)
  • Resultant wind speed(res_ws)

sgp5ebbrE22.b1:
  • Resultant wind speed(res_ws)
  • scalar wind speed(wind_s)

sgp15ebbrE22.b1:
  • scalar wind speed(wind_s)


Back To Table of Contents

DQRID : D050206.17
Start DateStart TimeEnd DateEnd Time
01/05/2005155501/07/20051605
Subject:
SGP/EBBR/E27  - Wind Speed Frozen Stopped By Ice Storm
DataStreams:sgp5ebbrE27.b1, sgp15ebbrE27.b1, sgp30ebbrE27.b1
Description:
An ice storm froze the wind speed sensor to a stopped condition.

The wind speed and residual wind speed measurements are incorrect.

This sensor failure does not affect the sensible and latent heat fluxes.
Measurements:sgp5ebbrE27.b1:
  • scalar wind speed(wind_s)

sgp30ebbrE27.b1:
  • Resultant wind speed(res_ws)
  • scalar wind speed(wind_s)

sgp15ebbrE27.b1:
  • scalar wind speed(wind_s)


Back To Table of Contents

DQRID : D050206.5
Start DateStart TimeEnd DateEnd Time
01/03/2005063501/05/20050200
Subject:
SGP/EBBR/E4  - Wind Speed Frozen Stopped By Ice Storm
DataStreams:sgp5ebbrE4.b1, sgp15ebbrE4.b1, sgp30ebbrE4.b1
Description:
An ice storm froze the wind speed sensor to a stopped condition.

The wind speed and residual wind speed measurements are incorrect.

This sensor failure does not affect the sensible and latent heat fluxes.
Measurements:sgp5ebbrE4.b1:
  • scalar wind speed(wind_s)
  • Resultant wind speed(res_ws)

sgp30ebbrE4.b1:
  • Resultant wind speed(res_ws)
  • scalar wind speed(wind_s)

sgp15ebbrE4.b1:
  • scalar wind speed(wind_s)


Back To Table of Contents

DQRID : D050206.6
Start DateStart TimeEnd DateEnd Time
01/04/2005145001/05/20050100
Subject:
SGP/EBBR/E7  - Wind Speed Frozen Stopped By Ice Storm
DataStreams:sgp5ebbrE7.b1, sgp15ebbrE7.b1, sgp30ebbrE7.b1
Description:
An ice storm froze the wind speed sensor to a stopped condition.

The wind speed and residual wind speed measurements are incorrect.

This sensor failure does not affect the sensible and latent heat fluxes.
Measurements:sgp5ebbrE7.b1:
  • scalar wind speed(wind_s)
  • Resultant wind speed(res_ws)

sgp30ebbrE7.b1:
  • Resultant wind speed(res_ws)
  • scalar wind speed(wind_s)

sgp15ebbrE7.b1:
  • scalar wind speed(wind_s)


Back To Table of Contents

DQRID : D050206.7
Start DateStart TimeEnd DateEnd Time
01/03/2005081001/04/20052100
Subject:
SGP/EBBR/E8  - Wind Speed Frozen Stopped By Ice Storm
DataStreams:sgp5ebbrE8.b1, sgp15ebbrE8.b1, sgp30ebbrE8.b1
Description:
An ice storm froze the wind speed sensor to a stopped condition.

The wind speed and residual wind speed measurements are incorrect.

This sensor failure does not affect the sensible and latent heat fluxes.
Measurements:sgp30ebbrE8.b1:
  • Resultant wind speed(res_ws)
  • scalar wind speed(wind_s)

sgp5ebbrE8.b1:
  • Resultant wind speed(res_ws)
  • scalar wind speed(wind_s)

sgp15ebbrE8.b1:
  • scalar wind speed(wind_s)


Back To Table of Contents

DQRID : D050206.8
Start DateStart TimeEnd DateEnd Time
01/04/2005150501/05/20050800
Subject:
SGP/EBBR/E9  - Wind Speed Frozen Stopped By Ice Storm
DataStreams:sgp5ebbrE9.b1, sgp15ebbrE9.b1, sgp30ebbrE9.b1
Description:
An ice storm froze the wind speed sensor to a stopped condition.

The wind speed and residual wind speed measurements are incorrect.

This sensor failure does not affect the sensible and latent heat fluxes.
Measurements:sgp15ebbrE9.b1:
  • scalar wind speed(wind_s)

sgp5ebbrE9.b1:
  • scalar wind speed(wind_s)
  • Resultant wind speed(res_ws)

sgp30ebbrE9.b1:
  • scalar wind speed(wind_s)
  • Resultant wind speed(res_ws)


Back To Table of Contents

DQRID : D050207.10
Start DateStart TimeEnd DateEnd Time
01/07/2005015001/07/20051425
Subject:
SGP/EBBR/E20  - Wind Direction Frozen Stopped By Ice Storm
DataStreams:sgp5ebbrE20.b1, sgp15ebbrE20.b1, sgp30ebbrE20.b1
Description:
The wind direction sensor was frozen stopped by ice from a storm.  
The wind direction, sigma_wd, and residual wind speed measurements 
are incorrect.
Measurements:sgp30ebbrE20.b1:
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • wind direction (relative to true north)(wind_d)
  • Resultant wind speed(res_ws)

sgp15ebbrE20.b1:
  • Wind direction (relative to true north)(mv_wind_d)

sgp5ebbrE20.b1:
  • wind direction (relative to true north)(wind_d)
  • Resultant wind speed(res_ws)
  • standard deviation of wind direction (sigma theta)(sigma_wd)


Back To Table of Contents

DQRID : D050207.11
Start DateStart TimeEnd DateEnd Time
01/05/2005085501/06/20051940
Subject:
SGP/EBBR/E22  - Wind Direction Frozen Stopped By Ice Storm
DataStreams:sgp5ebbrE22.b1, sgp15ebbrE22.b1, sgp30ebbrE22.b1
Description:
The wind direction sensor was frozen stopped by ice from a storm.  
The wind direction, sigma_wd, and residual wind speed measurements 
are incorrect.
Measurements:sgp30ebbrE22.b1:
  • wind direction (relative to true north)(wind_d)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • Resultant wind speed(res_ws)

sgp5ebbrE22.b1:
  • Resultant wind speed(res_ws)
  • wind direction (relative to true north)(wind_d)
  • standard deviation of wind direction (sigma theta)(sigma_wd)

sgp15ebbrE22.b1:
  • Wind direction (relative to true north)(mv_wind_d)


Back To Table of Contents

DQRID : D050207.13
Start DateStart TimeEnd DateEnd Time
01/06/2005100501/07/20051430
Subject:
SGP/EBBR/E27  - Wind Direction Frozen Stopped By Ice Storm
DataStreams:sgp5ebbrE27.b1, sgp15ebbrE27.b1, sgp30ebbrE27.b1
Description:
The wind direction sensor was frozen stopped by ice from a storm.  
The wind direction, sigma_wd, and residual wind speed measurements 
are incorrect.
Measurements:sgp5ebbrE27.b1:
  • Resultant wind speed(res_ws)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • wind direction (relative to true north)(wind_d)

sgp30ebbrE27.b1:
  • Resultant wind speed(res_ws)
  • wind direction (relative to true north)(wind_d)
  • standard deviation of wind direction (sigma theta)(sigma_wd)

sgp15ebbrE27.b1:
  • Wind direction (relative to true north)(mv_wind_d)


Back To Table of Contents

DQRID : D050207.2
Start DateStart TimeEnd DateEnd Time
01/03/2005084501/05/20050200
Subject:
SGP/EBBR/E4  - Wind Direction Frozen Stopped By Ice Storm
DataStreams:sgp5ebbrE4.b1, sgp15ebbrE4.b1, sgp30ebbrE4.b1
Description:
The wind direction sensor was frozen stopped by ice from a storm.  
The wind direction, sigma_wd, and residual wind speed measurements 
are incorrect.
Measurements:sgp5ebbrE4.b1:
  • wind direction (relative to true north)(wind_d)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • Resultant wind speed(res_ws)

sgp30ebbrE4.b1:
  • wind direction (relative to true north)(wind_d)
  • Resultant wind speed(res_ws)
  • standard deviation of wind direction (sigma theta)(sigma_wd)

sgp15ebbrE4.b1:
  • Wind direction (relative to true north)(mv_wind_d)


Back To Table of Contents

DQRID : D050207.3
Start DateStart TimeEnd DateEnd Time
01/03/2005085001/04/20052100
Subject:
SGP/EBBR/E8  - Wind Direction Frozen Stopped By Ice Storm
DataStreams:sgp5ebbrE8.b1, sgp15ebbrE8.b1, sgp30ebbrE8.b1
Description:
The wind direction sensor was frozen stopped by ice from a storm.  
The wind direction, sigma_wd, and residual wind speed measurements 
are incorrect.
Measurements:sgp30ebbrE8.b1:
  • Resultant wind speed(res_ws)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • wind direction (relative to true north)(wind_d)

sgp5ebbrE8.b1:
  • Resultant wind speed(res_ws)
  • wind direction (relative to true north)(wind_d)
  • standard deviation of wind direction (sigma theta)(sigma_wd)

sgp15ebbrE8.b1:
  • Wind direction (relative to true north)(mv_wind_d)


Back To Table of Contents

DQRID : D050207.4
Start DateStart TimeEnd DateEnd Time
01/04/2005175501/05/20050800
Subject:
SGP/EBBR/E9  - Wind Direction Frozen Stopped By Ice Storm
DataStreams:sgp5ebbrE9.b1, sgp15ebbrE9.b1, sgp30ebbrE9.b1
Description:
The wind direction sensor was frozen stopped by ice from a storm.  
The wind direction, sigma_wd, and residual wind speed measurements 
are incorrect.
Measurements:sgp15ebbrE9.b1:
  • Wind direction (relative to true north)(mv_wind_d)

sgp5ebbrE9.b1:
  • wind direction (relative to true north)(wind_d)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • Resultant wind speed(res_ws)

sgp30ebbrE9.b1:
  • Resultant wind speed(res_ws)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • wind direction (relative to true north)(wind_d)


Back To Table of Contents

DQRID : D050207.6
Start DateStart TimeEnd DateEnd Time
01/05/2005062501/07/20051850
01/11/2005154501/12/20050930
Subject:
SGP/EBBR/E13  - Wind Direction Frozen Stopped By Ice Storm
DataStreams:sgp5ebbrE13.b1, sgp15ebbrE13.b1, sgp30ebbrE13.b1
Description:
The wind direction sensor was frozen stopped by ice from a storm.  
The wind direction, sigma_wd, and residual wind speed measurements 
are incorrect.
Measurements:sgp15ebbrE13.b1:
  • Wind direction (relative to true north)(mv_wind_d)

sgp5ebbrE13.b1:
  • Resultant wind speed(res_ws)
  • wind direction (relative to true north)(wind_d)
  • standard deviation of wind direction (sigma theta)(sigma_wd)

sgp30ebbrE13.b1:
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • wind direction (relative to true north)(wind_d)
  • Resultant wind speed(res_ws)


Back To Table of Contents

DQRID : D050207.7
Start DateStart TimeEnd DateEnd Time
01/04/2005160501/05/20050200
Subject:
SGP/EBBR/E15  - Wind Direction Frozen Stopped By Ice Storm
DataStreams:sgp5ebbrE15.b1, sgp15ebbrE15.b1, sgp30ebbrE15.b1
Description:
The wind direction sensor was frozen stopped by ice from a storm.  
The wind direction, sigma_wd, and residual wind speed measurements 
are incorrect.
Measurements:sgp15ebbrE15.b1:
  • Wind direction (relative to true north)(mv_wind_d)

sgp30ebbrE15.b1:
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • wind direction (relative to true north)(wind_d)
  • Resultant wind speed(res_ws)

sgp5ebbrE15.b1:
  • wind direction (relative to true north)(wind_d)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • Resultant wind speed(res_ws)


Back To Table of Contents

DQRID : D050211.2
Start DateStart TimeEnd DateEnd Time
09/15/2004160003/07/20052100
Subject:
SGP/EBBR/E27 - Soil Moisture #5 Incorrect
DataStreams:sgp30ebbrE27.b1
Description:
The wrong CR10 program loaded from the storage module on 9/15/04.  During the previous 
change of program, an attempt was made to store the new program in the storage module; site 
ops techs did not notice that this attempt failed, leaving the old program in the storage 
module.  When power was cyled on 9/15/04, the old program with flat sm5 coefficients 
loaded into the CR10.  The "flat" coefficients resulted in the sm5 soil moisture hovering 
around 30%.

15 minute raw sm5 resistances were correct.

Average soil heat flow, sensible heat flux, and latent heat flux were not
significantly affected and so are not included in the list of incorrect measurements.
Measurements:sgp30ebbrE27.b1:
  • Soil moisture 5 (mass water/mass dry soil)(sm5)


Back To Table of Contents

DQRID : D050215.10
Start DateStart TimeEnd DateEnd Time
02/09/2005123002/09/20051600
Subject:
SGP/EBBR/E4  - Wind Direction Frozen Stopped By Ice
DataStreams:sgp5ebbrE4.b1, sgp15ebbrE4.b1, sgp30ebbrE4.b1
Description:
The wind direction sensor was frozen stopped by ice from a storm.  
The wind direction, sigma_wd, and residual wind speed measurements 
are incorrect.
Measurements:sgp5ebbrE4.b1:
  • wind direction (relative to true north)(wind_d)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • Resultant wind speed(res_ws)

sgp30ebbrE4.b1:
  • wind direction (relative to true north)(wind_d)
  • Resultant wind speed(res_ws)
  • standard deviation of wind direction (sigma theta)(sigma_wd)

sgp15ebbrE4.b1:
  • Wind direction (relative to true north)(mv_wind_d)


Back To Table of Contents

DQRID : D050215.11
Start DateStart TimeEnd DateEnd Time
01/11/2005133001/12/20050050
Subject:
SGP/EBBR/E7  - Wind Speed Frozen Stopped By Ice
DataStreams:sgp5ebbrE7.b1, sgp15ebbrE7.b1, sgp30ebbrE7.b1
Description:
An ice storm froze the wind speed sensor to a stopped condition.

The wind speed and residual wind speed measurements are incorrect.

This sensor failure does not affect the sensible and latent heat fluxes.
Measurements:sgp5ebbrE7.b1:
  • scalar wind speed(wind_s)
  • Resultant wind speed(res_ws)

sgp30ebbrE7.b1:
  • Resultant wind speed(res_ws)
  • scalar wind speed(wind_s)

sgp15ebbrE7.b1:
  • scalar wind speed(wind_s)


Back To Table of Contents

DQRID : D050215.12
Start DateStart TimeEnd DateEnd Time
01/12/2005072001/12/20051605
02/07/2005020002/08/20051930
Subject:
SGP/EBBR/E8  - Wind Speed Frozen Stopped By Ice Storm
DataStreams:sgp5ebbrE8.b1, sgp15ebbrE8.b1, sgp30ebbrE8.b1
Description:
An ice storm froze the wind speed sensor to a stopped condition.

The wind speed and residual wind speed measurements are incorrect.

This sensor failure does not affect the sensible and latent heat fluxes.
Measurements:sgp30ebbrE8.b1:
  • Resultant wind speed(res_ws)
  • scalar wind speed(wind_s)

sgp5ebbrE8.b1:
  • Resultant wind speed(res_ws)
  • scalar wind speed(wind_s)

sgp15ebbrE8.b1:
  • scalar wind speed(wind_s)


Back To Table of Contents

DQRID : D050215.13
Start DateStart TimeEnd DateEnd Time
02/07/2005050002/08/20050330
Subject:
SGP/EBBR/E8  - Wind Direction Frozen Stopped By Ice
DataStreams:sgp5ebbrE8.b1, sgp15ebbrE8.b1, sgp30ebbrE8.b1
Description:
The wind direction sensor was frozen stopped by ice from a storm.  
The wind direction, sigma_wd, and residual wind speed measurements 
are incorrect.
Measurements:sgp30ebbrE8.b1:
  • Resultant wind speed(res_ws)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • wind direction (relative to true north)(wind_d)

sgp5ebbrE8.b1:
  • Resultant wind speed(res_ws)
  • wind direction (relative to true north)(wind_d)
  • standard deviation of wind direction (sigma theta)(sigma_wd)

sgp15ebbrE8.b1:
  • Wind direction (relative to true north)(mv_wind_d)


Back To Table of Contents

DQRID : D050215.14
Start DateStart TimeEnd DateEnd Time
01/10/2005230001/11/20051645
Subject:
SGP/EBBR/E9  - Wind Direction Frozen Stopped By Ice
DataStreams:sgp5ebbrE9.b1, sgp15ebbrE9.b1, sgp30ebbrE9.b1
Description:
The wind direction sensor was frozen stopped by ice from a storm.  
The wind direction, sigma_wd, and residual wind speed measurements 
are incorrect.
Measurements:sgp15ebbrE9.b1:
  • Wind direction (relative to true north)(mv_wind_d)

sgp5ebbrE9.b1:
  • wind direction (relative to true north)(wind_d)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • Resultant wind speed(res_ws)

sgp30ebbrE9.b1:
  • Resultant wind speed(res_ws)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • wind direction (relative to true north)(wind_d)


Back To Table of Contents

DQRID : D050215.15
Start DateStart TimeEnd DateEnd Time
02/08/2005053002/09/20051830
Subject:
SGP/EBBR/E9  - Wind Speed Frozen Stopped By Ice
DataStreams:sgp5ebbrE9.b1, sgp15ebbrE9.b1, sgp30ebbrE9.b1
Description:
An ice storm froze the wind speed sensor to a stopped condition.

The wind speed and residual wind speed measurements are incorrect.

This sensor failure does not affect the sensible and latent heat fluxes.
Measurements:sgp15ebbrE9.b1:
  • scalar wind speed(wind_s)

sgp5ebbrE9.b1:
  • scalar wind speed(wind_s)
  • Resultant wind speed(res_ws)

sgp30ebbrE9.b1:
  • scalar wind speed(wind_s)
  • Resultant wind speed(res_ws)


Back To Table of Contents

DQRID : D050215.18
Start DateStart TimeEnd DateEnd Time
01/12/2005003001/12/20051545
Subject:
SGP/EBBR/E15  - Wind Speed Frozen Stopped By Ice
DataStreams:sgp5ebbrE15.b1, sgp15ebbrE15.b1, sgp30ebbrE15.b1
Description:
An ice storm froze the wind speed sensor to a stopped condition.

The wind speed and residual wind speed measurements are incorrect.

This sensor failure does not affect the sensible and latent heat fluxes.
Measurements:sgp15ebbrE15.b1:
  • scalar wind speed(wind_s)

sgp30ebbrE15.b1:
  • scalar wind speed(wind_s)
  • Resultant wind speed(res_ws)

sgp5ebbrE15.b1:
  • scalar wind speed(wind_s)
  • Resultant wind speed(res_ws)


Back To Table of Contents

DQRID : D050215.19
Start DateStart TimeEnd DateEnd Time
01/12/2005003001/12/20050930
Subject:
SGP/EBBR/E15  - Wind Direction Frozen Stopped By Ice
DataStreams:sgp5ebbrE15.b1, sgp15ebbrE15.b1, sgp30ebbrE15.b1
Description:
The wind direction sensor was frozen stopped by ice from a storm.  
The wind direction, sigma_wd, and residual wind speed measurements 
are incorrect.
Measurements:sgp15ebbrE15.b1:
  • Wind direction (relative to true north)(mv_wind_d)

sgp30ebbrE15.b1:
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • wind direction (relative to true north)(wind_d)
  • Resultant wind speed(res_ws)

sgp5ebbrE15.b1:
  • wind direction (relative to true north)(wind_d)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • Resultant wind speed(res_ws)


Back To Table of Contents

DQRID : D050215.21
Start DateStart TimeEnd DateEnd Time
01/11/2005091501/11/20052100
Subject:
SGP/EBBR/E22  - Wind Speed Frozen Stopped By Ice
DataStreams:sgp5ebbrE22.b1, sgp15ebbrE22.b1, sgp30ebbrE22.b1
Description:
An ice storm froze the wind speed sensor to a stopped condition.

The wind speed and residual wind speed measurements are incorrect.

This sensor failure does not affect the sensible and latent heat fluxes.
Measurements:sgp30ebbrE22.b1:
  • scalar wind speed(wind_s)
  • Resultant wind speed(res_ws)

sgp5ebbrE22.b1:
  • Resultant wind speed(res_ws)
  • scalar wind speed(wind_s)

sgp15ebbrE22.b1:
  • scalar wind speed(wind_s)


Back To Table of Contents

DQRID : D050215.22
Start DateStart TimeEnd DateEnd Time
01/11/2005173001/11/20051825
Subject:
SGP/EBBR/E22  - Wind Direction Frozen Stopped By Ice
DataStreams:sgp5ebbrE22.b1, sgp15ebbrE22.b1, sgp30ebbrE22.b1
Description:
The wind direction sensor was frozen stopped by ice from a storm.  
The wind direction, sigma_wd, and residual wind speed measurements 
are incorrect.
Measurements:sgp30ebbrE22.b1:
  • wind direction (relative to true north)(wind_d)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • Resultant wind speed(res_ws)

sgp5ebbrE22.b1:
  • Resultant wind speed(res_ws)
  • wind direction (relative to true north)(wind_d)
  • standard deviation of wind direction (sigma theta)(sigma_wd)

sgp15ebbrE22.b1:
  • Wind direction (relative to true north)(mv_wind_d)


Back To Table of Contents

DQRID : D050215.9
Start DateStart TimeEnd DateEnd Time
01/12/2005133001/12/20051715
02/07/2005030002/09/20051630
Subject:
SGP/EBBR/E4  - Wind Speed Frozen Stopped By Ice
DataStreams:sgp5ebbrE4.b1, sgp15ebbrE4.b1, sgp30ebbrE4.b1
Description:
An ice storm froze the wind speed sensor to a stopped condition.

The wind speed and residual wind speed measurements are incorrect.

This sensor failure does not affect the sensible and latent heat fluxes.
Measurements:sgp5ebbrE4.b1:
  • scalar wind speed(wind_s)
  • Resultant wind speed(res_ws)

sgp30ebbrE4.b1:
  • Resultant wind speed(res_ws)
  • scalar wind speed(wind_s)

sgp15ebbrE4.b1:
  • scalar wind speed(wind_s)


Back To Table of Contents

DQRID : D050303.4
Start DateStart TimeEnd DateEnd Time
02/24/2005010502/24/20051500
Subject:
SGP/EBBR/E4 - Wind Speed and Direction Frozen by Ice Storm
DataStreams:sgp5ebbrE4.b1, sgp15ebbrE4.b1, sgp30ebbrE4.b1
Description:
The wind speed and direction sensors were frozen during an ice storm on 2/24/05.
Measurements:sgp5ebbrE4.b1:
  • scalar wind speed(wind_s)
  • wind direction (relative to true north)(wind_d)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • Resultant wind speed(res_ws)

sgp30ebbrE4.b1:
  • wind direction (relative to true north)(wind_d)
  • Resultant wind speed(res_ws)
  • scalar wind speed(wind_s)
  • standard deviation of wind direction (sigma theta)(sigma_wd)

sgp15ebbrE4.b1:
  • Wind direction (relative to true north)(mv_wind_d)
  • scalar wind speed(wind_s)


Back To Table of Contents

DQRID : D050323.2
Start DateStart TimeEnd DateEnd Time
03/06/2005140003/16/20051900
Subject:
SGP/EBBR/E22 - Net Radiation Too Low - Top Dome Broken
DataStreams:sgp5ebbrE22.b1, sgp15ebbrE22.b1, sgp30ebbrE22.b1
Description:
Net radiation values were too low because of a broken top dome.
Measurements:sgp5ebbrE22.b1:
  • specific humidity(q)

sgp30ebbrE22.b1:
  • corrected sensible heat flux(h)
  • specific humidity(q)
  • latent heat flux(e)

sgp15ebbrE22.b1:
  • Net radiation(mv_q)


Back To Table of Contents

DQRID : D050324.1
Start DateStart TimeEnd DateEnd Time
11/08/2004183003/01/20051630
Subject:
SGP/EBBR/E15 - Soil Heat Flows Undermeasured, and Latent and Sensible Heat Fluxes 
Overstimated
DataStreams:sgp30ebbrE15.b1
Description:
Use of the wrong soil type soil moisture coefficients caused soil moisture to be greatly 
undermeasured (a typical wrong value was 4% instead of the correct 17%), soil heat flows 
to be undermeasured, and sensible and latent heat fluxes to be overestimated.

Soil heat flow plate outputs were undermeasured by up to 10%, change of energy storage was 
undermeasured by up to 80% and total soil heat flow was undermeasured by up to 50% as a 
result. This would result in approximately a 5% overestimation of both sensible and 
latent heat fluxes.
Measurements:sgp30ebbrE15.b1:
  • Soil moisture 3 (mass water/mass dry soil)(sm3)
  • 5 cm soil heat flow corrected for soil moisture content, site 3(c_shf3)
  • soil heat flow at the surface 3(g3)
  • 0-5 cm change in soil heat storage with time, site 3(ces3)
  • Soil heat capacity 5(cs5)
  • 0-5 cm change in soil heat storage with time, site 4(ces4)
  • Soil moisture 2 (mass water/mass dry soil)(sm2)
  • 5 cm soil heat flow corrected for soil moisture content, site 1(c_shf1)
  • latent heat flux(e)
  • Soil moisture 1 (mass water/mass dry soil)(sm1)
  • 0-5 cm change in soil heat storage with time, site 2(ces1)
  • soil heat flow at the surface 5(g5)
  • Soil heat capacity 3(cs3)
  • Soil moisture 4 (mass water/mass dry soil)(sm4)
  • soil heat flow at the surface 4(g4)
  • 5 cm soil heat flow corrected for soil moisture content, site 5(c_shf5)
  • Soil heat capacity 4(cs4)
  • soil heat flow at the surface 2(g2)
  • Soil heat capacity 2(cs2)
  • 0-5 cm change in soil heat storage with time, site 5(ces5)
  • soil heat flow at the surface 1(g1)
  • 5 cm soil heat flow corrected for soil moisture content, site 4(c_shf4)
  • Soil heat capacity 1(cs1)
  • 5 cm soil heat flow corrected for soil moisture content, site 2(c_shf2)
  • average surface soil heat flow at the surface(ave_shf)
  • corrected sensible heat flux(h)
  • Soil moisture 5 (mass water/mass dry soil)(sm5)
  • 0-5 cm change in soil heat storage with time, site 2(ces2)


Back To Table of Contents

DQRID : D050330.2
Start DateStart TimeEnd DateEnd Time
03/08/2005194503/22/20051900
Subject:
SGP/EBBR/E7 - Wrong Datalogger Program
DataStreams:sgp30ebbrE7.b1
Description:
The wrong version 9 datalogger program (unit 12 instead of 13) was installed
during the period listed, causing soil heat flows to be 2 to 3 W m-2 too
high, pressure to be 0.35 kPa too high, and soil moistures to be 10% too low.

Effects on the sensible and latent heat flow are much smaller than the system error.
Measurements:sgp30ebbrE7.b1:
  • 5 cm soil heat flow corrected for soil moisture content, site 5(c_shf5)
  • 0-5 cm change in soil heat storage with time, site 4(ces4)
  • Soil moisture 3 (mass water/mass dry soil)(sm3)
  • Soil moisture 2 (mass water/mass dry soil)(sm2)
  • Soil moisture 1 (mass water/mass dry soil)(sm1)
  • soil heat flow at the surface 3(g3)
  • 5 cm soil heat flow corrected for soil moisture content, site 3(c_shf3)
  • soil heat flow at the surface 2(g2)
  • Soil heat capacity 1(cs1)
  • 0-5 cm change in soil heat storage with time, site 2(ces2)
  • Soil moisture 4 (mass water/mass dry soil)(sm4)
  • 0-5 cm change in soil heat storage with time, site 2(ces1)
  • soil heat flow at the surface 1(g1)
  • average surface soil heat flow at the surface(ave_shf)
  • 5 cm soil heat flow corrected for soil moisture content, site 1(c_shf1)
  • soil heat flow at the surface 4(g4)
  • Soil heat capacity 3(cs3)
  • Soil heat capacity 4(cs4)
  • 0-5 cm change in soil heat storage with time, site 3(ces3)
  • 5 cm soil heat flow corrected for soil moisture content, site 2(c_shf2)
  • Soil heat capacity 5(cs5)
  • pressure at constant pressure surface(pres)
  • Soil moisture 5 (mass water/mass dry soil)(sm5)
  • 0-5 cm change in soil heat storage with time, site 5(ces5)
  • soil heat flow at the surface 5(g5)
  • 5 cm soil heat flow corrected for soil moisture content, site 4(c_shf4)
  • Soil heat capacity 2(cs2)


Back To Table of Contents

DQRID : D050404.1
Start DateStart TimeEnd DateEnd Time
03/30/2005200004/13/20051700
Subject:
SGP/EBBR/E20 - Wrong Datalogger Program Installed
DataStreams:sgp30ebbrE20.b1
Description:
ts4 went offscale and sm4 dropped to a constant 16% when a "new" program
was installed on 3/30/05.  The wrong program was installed.

Because ts4 did not change with time, it did not mess up the calculation
of e and h.  e and h are slightly overestimated, but only by about 1%,
far less than the system error. This is a rare type of instrument problem where the 
concequences are minimal.

Therefore, e and h are not listed as incorrect in this DQR and are still usable during the 
stated period.
Measurements:sgp30ebbrE20.b1:
  • Soil moisture 4 (mass water/mass dry soil)(sm4)
  • 5 cm soil heat flow corrected for soil moisture content, site 4(c_shf4)
  • Soil heat capacity 4(cs4)
  • soil heat flow at the surface 4(g4)
  • 0-5 cm change in soil heat storage with time, site 4(ces4)
  • 0-5 cm integrated soil temperature, site 4(ts4)


Back To Table of Contents

DQRID : D050404.2
Start DateStart TimeEnd DateEnd Time
03/20/2005210003/27/20051500
Subject:
SGP/EBBR/E4 - Soil Temperature #5 Spiking Upwards
DataStreams:sgp30ebbrE4.b1
Description:
Soil temperature #5 experienced some erratic behavior during nighttime, spiking upwards 
slightly at times (mouse activity?).  This caused soil moisture #5 to be corrected 
downwards very slightly.
Measurements:sgp30ebbrE4.b1:
  • 0-5 cm integrated soil temperature, site 5(ts5)
  • Soil moisture 5 (mass water/mass dry soil)(sm5)


Back To Table of Contents

DQRID : D050404.4
Start DateStart TimeEnd DateEnd Time
03/20/2005123004/27/20052000
Subject:
SGP/EBBR/E20 - Temp. of thum_left Incorrect At Times
DataStreams:sgp5ebbrE20.b1, sgp15ebbrE20.b1, sgp30ebbrE20.b1
Description:
The temperature portion of the left T/RH probe temperature spiked at times.  This was 
caused by a faulty surge protector in the J-Panel.
Measurements:sgp30ebbrE20.b1:
  • bottom vapor pressure(vp_bot)
  • temperature of the top humidity sensor chamber(thum_top)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • ratio of sensible/latent heat fluxes (Bowen ratio)(bowen)
  • latent heat flux(e)
  • top vapor pressure(vp_top)
  • corrected sensible heat flux(h)

sgp15ebbrE20.b1:
  • Temperature of left humidity sensor chamber(rr_thum_l)

sgp5ebbrE20.b1:
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • temperature of the top humidity sensor chamber(thum_top)
  • bottom vapor pressure(vp_bot)
  • top vapor pressure(vp_top)


Back To Table of Contents

DQRID : D050413.3
Start DateStart TimeEnd DateEnd Time
04/21/2005023004/26/20052215
Subject:
SGP/EBBR/E8 - Battery Voltage Problem
DataStreams:sgp5ebbrE8.b1, sgp15ebbrE8.b1, sgp30ebbrE8.b1
Description:
Battery voltage was too low to give correct data.
Measurements:sgp30ebbrE8.b1:
  • Soil moisture 4 (mass water/mass dry soil)(sm4)
  • 0-5 cm integrated soil temperature, site 2(ts1)
  • Soil moisture 3 (mass water/mass dry soil)(sm3)
  • scalar wind speed(wind_s)
  • specific humidity(q)
  • bottom air temperature(tair_bot)
  • soil heat flow at the surface 4(g4)
  • 0-5 cm change in soil heat storage with time, site 2(ces1)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • soil heat flow at the surface 3(g3)
  • 5 cm soil heat flow, site 4(shf4)
  • 0-5 cm change in soil heat storage with time, site 2(ces2)
  • Soil moisture 1 (mass water/mass dry soil)(sm1)
  • 5 cm soil heat flow corrected for soil moisture content, site 5(c_shf5)
  • 0-5 cm integrated soil temperature, site 5(ts5)
  • east longitude for all the input platforms.(lon)
  • bottom relative humidity(hum_bot)
  • ratio of sensible/latent heat fluxes (Bowen ratio)(bowen)
  • 5 cm soil heat flow corrected for soil moisture content, site 4(c_shf4)
  • 5 cm soil heat flow, site 5(shf5)
  • north latitude for all the input platforms.(lat)
  • 5 cm soil heat flow, site 3(shf3)
  • 5 cm soil heat flow corrected for soil moisture content, site 3(c_shf3)
  • soil heat flow at the surface 2(g2)
  • Soil moisture 5 (mass water/mass dry soil)(sm5)
  • 0-5 cm integrated soil temperature, site 3(ts3)
  • bottom vapor pressure(vp_bot)
  • soil heat flow at the surface 5(g5)
  • Time offset from base_time(base_time)
  • latent heat flux(e)
  • 5 cm soil heat flow corrected for soil moisture content, site 2(c_shf2)
  • 0-5 cm integrated soil temperature, site 2(ts2)
  • top air temperature(tair_top)
  • temperature of the top humidity sensor chamber(thum_top)
  • Soil heat capacity 4(cs4)
  • 5 cm soil heat flow corrected for soil moisture content, site 1(c_shf1)
  • Soil heat capacity 5(cs5)
  • Exchange mechanism position indicator (15 to 30 min)(home_30)
  • Exchange mechanism position indicator (0 to 15 min)(home_15)
  • top relative humidity(hum_top)
  • corrected sensible heat flux(h)
  • Resultant wind speed(res_ws)
  • Reference Thermistor Temperature(tref)
  • Soil heat capacity 3(cs3)
  • soil heat flow at the surface 1(g1)
  • average surface soil heat flow at the surface(ave_shf)
  • Soil moisture 2 (mass water/mass dry soil)(sm2)
  • 5 cm soil heat flow, site 2(shf2)
  • 0-5 cm change in soil heat storage with time, site 4(ces4)
  • top vapor pressure(vp_top)
  • 5 cm soil heat flow, site 1(shf1)
  • altitude above sea levelaltunits(alt)
  • 0-5 cm change in soil heat storage with time, site 3(ces3)
  • Soil heat capacity 2(cs2)
  • Time offset of tweaks from base_time(time_offset)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • 0-5 cm change in soil heat storage with time, site 5(ces5)
  • 0-5 cm integrated soil temperature, site 4(ts4)
  • Soil heat capacity 1(cs1)
  • wind direction (relative to true north)(wind_d)
  • pressure at constant pressure surface(pres)

sgp5ebbrE8.b1:
  • temperature of the top humidity sensor chamber(thum_top)
  • bottom vapor pressure(vp_bot)
  • wind direction (relative to true north)(wind_d)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • Time offset of tweaks from base_time(time_offset)
  • Time offset from base_time(base_time)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • Time offset from midnight of date of file. For CO data, this is identical to
    time_offset and is included for compatibility.(time)
  • bottom relative humidity(hum_bot)
  • specific humidity(q)
  • north latitude for all the input platforms.(lat)
  • top relative humidity(hum_top)
  • top vapor pressure(vp_top)
  • Resultant wind speed(res_ws)
  • scalar wind speed(wind_s)
  • Home signal(home)
  • Reference Thermistor Temperature(tref)
  • bottom air temperature(tair_bot)
  • pressure at constant pressure surface(pres)
  • top air temperature(tair_top)
  • east longitude for all the input platforms.(lon)
  • altitude above sea levelaltunits(alt)

sgp15ebbrE8.b1:
  • Soil heat flow 2(mv_hft2)
  • Soil heat flow 3(mv_hft3)
  • Temperature of left humidity sensor chamber(rr_thum_l)
  • Time offset from base_time(base_time)
  • altitude above sea levelaltunits(alt)
  • Soil heat flow 1(mv_hft1)
  • Temperature of right humidity sensor chamber(rr_thum_r)
  • Left relative humidity(mv_hum_l)
  • Atmospheric pressure(mv_pres)
  • Time offset of tweaks from base_time(time_offset)
  • Battery(bat)
  • scalar wind speed(wind_s)
  • Soil moisture 5(r_sm5)
  • Wind direction (relative to true north)(mv_wind_d)
  • Soil temperature 3(rr_ts3)
  • Soil heat flow 4(mv_hft4)
  • Net radiation(mv_q)
  • Left air temperature(tair_l)
  • Soil heat flow 5(mv_hft5)
  • Reference temperature(rr_tref)
  • Soil temperature 1(rr_ts1)
  • Soil moisture 1(r_sm1)
  • north latitude for all the input platforms.(lat)
  • Soil temperature 5(rr_ts5)
  • Soil temperature 4(rr_ts4)
  • Signature(signature)
  • Soil temperature 2(rr_ts2)
  • Soil moisture 3(r_sm3)
  • Home signal(mv_home)
  • Right air temperature(tair_r)
  • Right relative humidity(mv_hum_r)
  • east longitude for all the input platforms.(lon)
  • Soil moisture 2(r_sm2)
  • Soil moisture 4(r_sm4)


Back To Table of Contents

DQRID : D050413.6
Start DateStart TimeEnd DateEnd Time
03/04/2004164503/02/20051600
Subject:
SGP/EBBR/E27 - SM2 Coefficients Incorect
DataStreams:sgp15ebbrE27.b1, sgp30ebbrE27.b1
Description:
Soil Moisture #2 coefficients in the CR10 datalogger program were incorrect during the 
time
that an old program version was installed.
Measurements:sgp30ebbrE27.b1:
  • 5 cm soil heat flow corrected for soil moisture content, site 2(c_shf2)
  • Soil moisture 2 (mass water/mass dry soil)(sm2)
  • Soil heat capacity 2(cs2)
  • soil heat flow at the surface 2(g2)
  • 0-5 cm change in soil heat storage with time, site 2(ces2)

sgp15ebbrE27.b1:
  • Soil moisture 2(r_sm2)


Back To Table of Contents

DQRID : D050510.3
Start DateStart TimeEnd DateEnd Time
02/11/2005143005/13/20051900
Subject:
SGP/EBBR/E13 - Net Radiometer Tilted Half Degree West
DataStreams:sgp5ebbrE13.b1, sgp15ebbrE13.b1, sgp30ebbrE13.b1
Description:
The net radiation daily peak on sunny days occured 1/2 hour after the net radiation peak 
at E2, E9, and the SIRS because the sensor was tipped to the west about 1/2 degree.
Measurements:sgp15ebbrE13.b1:
  • Net radiation(mv_q)

sgp5ebbrE13.b1:
  • specific humidity(q)

sgp30ebbrE13.b1:
  • specific humidity(q)
  • latent heat flux(e)
  • corrected sensible heat flux(h)


Back To Table of Contents

DQRID : D050601.2
Start DateStart TimeEnd DateEnd Time
05/02/2005121506/11/20050600
Subject:
SGP/EBBR/E9 - Soil moisture too high
DataStreams:sgp15ebbrE9.b1, sgp30ebbrE9.b1
Description:
The 15 and 30 minute data for sm3 indicated that there was a problem with the sensor that 
kept the soil moisture artificially high.  This corrected itself on 6/11, but it is not 
clear why. 

A new sensor was installed on 6/17 and it has behaved well since then.
Measurements:sgp15ebbrE9.b1:
  • Soil moisture 3(r_sm3)

sgp30ebbrE9.b1:
  • Soil moisture 3 (mass water/mass dry soil)(sm3)


Back To Table of Contents

DQRID : D050602.2
Start DateStart TimeEnd DateEnd Time
05/24/2005083006/01/20051600
Subject:
SGP/EBBR/E4 - Water in Net Radiometer
DataStreams:sgp5ebbrE4.b1, sgp15ebbrE4.b1, sgp30ebbrE4.b1
Description:
The net radiometer had water in the bottom dome.  All net radiation, sensible heat flux, 
and
latent heat flux data during this period is incorrect.
Measurements:sgp5ebbrE4.b1:
  • specific humidity(q)

sgp30ebbrE4.b1:
  • specific humidity(q)
  • corrected sensible heat flux(h)
  • latent heat flux(e)

sgp15ebbrE4.b1:
  • Net radiation(mv_q)


Back To Table of Contents

DQRID : D050622.1
Start DateStart TimeEnd DateEnd Time
06/08/2005190007/06/20051630
Subject:
SGP/EBBR/E13 - Sensible and Latent Heat Fluxes Incorrect (AEM failure)
DataStreams:sgp5ebbrE13.b1, sgp15ebbrE13.b1, sgp30ebbrE13.b1
Description:
The AEM was stuck in the home 30 position most of this period.

Therefore, the sensible and latent heat fluxes are incorrect during most of this period.
Measurements:sgp15ebbrE13.b1:
  • Left air temperature(tair_l)
  • Right air temperature(tair_r)

sgp5ebbrE13.b1:
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • top vapor pressure(vp_top)
  • top air temperature(tair_top)
  • temperature of the top humidity sensor chamber(thum_top)
  • bottom vapor pressure(vp_bot)
  • bottom air temperature(tair_bot)

sgp30ebbrE13.b1:
  • bottom relative humidity(hum_bot)
  • ratio of sensible/latent heat fluxes (Bowen ratio)(bowen)
  • bottom vapor pressure(vp_bot)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • temperature of the top humidity sensor chamber(thum_top)
  • latent heat flux(e)
  • corrected sensible heat flux(h)
  • bottom air temperature(tair_bot)
  • top air temperature(tair_top)
  • top relative humidity(hum_top)
  • top vapor pressure(vp_top)


Back To Table of Contents

DQRID : D050624.1
Start DateStart TimeEnd DateEnd Time
05/13/2005113005/13/20051930
Subject:
SGP/EBBR/E4 - All Measurements Incorrect Due to Low Battery Voltage
DataStreams:sgp5ebbrE4.b1, sgp15ebbrE4.b1, sgp30ebbrE4.b1
Description:
All measurements were incorrect as battery voltage fell below the level that is required 
to ensure correct data values.
Measurements:sgp5ebbrE4.b1:
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • bottom air temperature(tair_bot)
  • Resultant wind speed(res_ws)
  • scalar wind speed(wind_s)
  • temperature of the top humidity sensor chamber(thum_top)
  • pressure at constant pressure surface(pres)
  • top relative humidity(hum_top)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • Reference Thermistor Temperature(tref)
  • bottom relative humidity(hum_bot)
  • specific humidity(q)
  • bottom vapor pressure(vp_bot)
  • top vapor pressure(vp_top)
  • top air temperature(tair_top)
  • wind direction (relative to true north)(wind_d)
  • Home signal(home)

sgp30ebbrE4.b1:
  • Soil heat capacity 3(cs3)
  • 5 cm soil heat flow corrected for soil moisture content, site 1(c_shf1)
  • bottom relative humidity(hum_bot)
  • Soil heat capacity 2(cs2)
  • Soil heat capacity 5(cs5)
  • latent heat flux(e)
  • 0-5 cm change in soil heat storage with time, site 2(ces2)
  • pressure at constant pressure surface(pres)
  • specific humidity(q)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • Exchange mechanism position indicator (0 to 15 min)(home_15)
  • Soil moisture 1 (mass water/mass dry soil)(sm1)
  • Soil heat capacity 4(cs4)
  • Soil moisture 4 (mass water/mass dry soil)(sm4)
  • ratio of sensible/latent heat fluxes (Bowen ratio)(bowen)
  • 5 cm soil heat flow corrected for soil moisture content, site 3(c_shf3)
  • Soil moisture 3 (mass water/mass dry soil)(sm3)
  • Soil moisture 2 (mass water/mass dry soil)(sm2)
  • bottom vapor pressure(vp_bot)
  • Resultant wind speed(res_ws)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • 0-5 cm integrated soil temperature, site 4(ts4)
  • Soil moisture 5 (mass water/mass dry soil)(sm5)
  • Exchange mechanism position indicator (15 to 30 min)(home_30)
  • 0-5 cm integrated soil temperature, site 2(ts1)
  • Soil heat capacity 1(cs1)
  • soil heat flow at the surface 1(g1)
  • 5 cm soil heat flow corrected for soil moisture content, site 4(c_shf4)
  • 0-5 cm integrated soil temperature, site 2(ts2)
  • wind direction (relative to true north)(wind_d)
  • temperature of the top humidity sensor chamber(thum_top)
  • soil heat flow at the surface 5(g5)
  • 5 cm soil heat flow, site 2(shf2)
  • top vapor pressure(vp_top)
  • average surface soil heat flow at the surface(ave_shf)
  • 0-5 cm integrated soil temperature, site 5(ts5)
  • scalar wind speed(wind_s)
  • 5 cm soil heat flow corrected for soil moisture content, site 5(c_shf5)
  • 0-5 cm integrated soil temperature, site 3(ts3)
  • 5 cm soil heat flow, site 1(shf1)
  • 5 cm soil heat flow corrected for soil moisture content, site 2(c_shf2)
  • bottom air temperature(tair_bot)
  • soil heat flow at the surface 4(g4)
  • top relative humidity(hum_top)
  • 5 cm soil heat flow, site 5(shf5)
  • Reference Thermistor Temperature(tref)
  • 0-5 cm change in soil heat storage with time, site 5(ces5)
  • 0-5 cm change in soil heat storage with time, site 4(ces4)
  • 5 cm soil heat flow, site 3(shf3)
  • 0-5 cm change in soil heat storage with time, site 3(ces3)
  • 5 cm soil heat flow, site 4(shf4)
  • soil heat flow at the surface 3(g3)
  • corrected sensible heat flux(h)
  • top air temperature(tair_top)
  • soil heat flow at the surface 2(g2)
  • 0-5 cm change in soil heat storage with time, site 2(ces1)

sgp15ebbrE4.b1:
  • Home signal(mv_home)
  • Soil heat flow 3(mv_hft3)
  • Wind direction (relative to true north)(mv_wind_d)
  • Right air temperature(tair_r)
  • Left air temperature(tair_l)
  • Soil heat flow 2(mv_hft2)
  • scalar wind speed(wind_s)
  • Right relative humidity(mv_hum_r)
  • Soil temperature 5(rr_ts5)
  • Net radiation(mv_q)
  • Soil temperature 2(rr_ts2)
  • Reference temperature(rr_tref)
  • Temperature of left humidity sensor chamber(rr_thum_l)
  • Temperature of right humidity sensor chamber(rr_thum_r)
  • Soil temperature 3(rr_ts3)
  • Soil temperature 1(rr_ts1)
  • Soil moisture 4(r_sm4)
  • Soil moisture 1(r_sm1)
  • Soil temperature 4(rr_ts4)
  • Soil moisture 3(r_sm3)
  • Soil moisture 2(r_sm2)
  • Soil heat flow 1(mv_hft1)
  • Soil heat flow 5(mv_hft5)
  • Left relative humidity(mv_hum_l)
  • Atmospheric pressure(mv_pres)
  • Soil moisture 5(r_sm5)
  • Soil heat flow 4(mv_hft4)


Back To Table of Contents

DQRID : D050624.2
Start DateStart TimeEnd DateEnd Time
05/13/2005080005/24/20051700
Subject:
SGP/EBBR/E15 - Net Radiation Too Large - Water in Bottom
DataStreams:sgp5ebbrE15.b1, sgp15ebbrE15.b1, sgp30ebbrE15.b1
Description:
Water in the bottom dome of the net radiometer made the measurements incorrectly large.  
Sensible and latent heat fluxes were therefore 
incorrect.
Measurements:sgp15ebbrE15.b1:
  • Net radiation(mv_q)

sgp30ebbrE15.b1:
  • specific humidity(q)
  • latent heat flux(e)
  • corrected sensible heat flux(h)

sgp5ebbrE15.b1:
  • specific humidity(q)


Back To Table of Contents

DQRID : D050624.7
Start DateStart TimeEnd DateEnd Time
04/01/2001000003/31/20052100
Subject:
SGP/EBBR/E13 - Improved EBBR CR10 Program
DataStreams:sgp30ebbrE13.b1
Description:
Effective 20050331.2100, the EBBR.E13 CR10 program was revised to improve the quality of 
the primary measurements as follows:

1) An RMS procedure is used to determine max and min limits of acceptable soil heat flow.  
This is applied to the individual soil sets.  Measurements outside the limits are 
rejected and the measurements within the limits are used to calculate the average soil heat flow.

2) Max and min limits are used to determine incorrect values of net radiation, sensible 
heat flux (h), latent heat flux (e), and automatic exchange mechanism (AEM) signal.  If AEM 
signal is outside the limits, h and e are set to 999s.  If net radiation is outside the 
limits, h and e are set to 999s. If h or e are outside the limits, h and e are set to 999s.

Virtually no incorrect soil measurement will affect the primary measurements of h and e.

By setting h and e to 999s, it can be easily seen that the primary variables are 
incorrect; no other interpretation is possible.

Prior to 20050331, the improved CR10 program was NOT in effect.  DQRs have been submitted 
for known instances of incorrect soil measurements which affected the quality of the 
primary measurements of h and e.

Note: the DQR begin date is the begin date of the sgp30ebbrE13.b1 data stream.  The 
earlier version of the CR10 program was also used on previous EBBR datastream names (e.g. 
sgp30ebbrE13.a1).
Measurements:sgp30ebbrE13.b1:
  • average surface soil heat flow at the surface(ave_shf)
  • latent heat flux(e)
  • corrected sensible heat flux(h)


Back To Table of Contents

DQRID : D050719.10
Start DateStart TimeEnd DateEnd Time
04/01/2001000003/29/20051900
Subject:
SGP/EBBR/E15 - Improved EBBR CR10 Program
DataStreams:sgp30ebbrE15.b1
Description:
Effective 20050329.1900, the EBBR.E15 CR10 program was revised to improve 
the quality of the primary measurements as follows:
   
1) An RMS procedure is used to determine max and min limits of acceptable
soil heat flow.  This is applied to the individual soil sets.  Measurements
outside the limits are rejected and the measurements within the limits are
used to calculate the average soil heat flow.
   
2) Max and min limits are used to determine incorrect values of net
radiation, sensible heat flux (h), latent heat flux (e), and automatic
exchange mechanism (AEM) signal.  If AEM signal is outside the limits, h 
and e are set to 999s.  If net radiation is outside the limits, h and e are 
set to 999s. If h or e are outside the limits, h and e are set to 999s.
   
Virtually no incorrect soil measurement will affect the primary 
measurements of h and e.
   
By setting h and e to 999s, it can be easily seen that the primary 
variables are incorrect; no other interpretation is possible.
   
Prior to 20050329, the improved CR10 program was NOT in effect.  DQRs have
been submitted for known instances of incorrect soil measurements which
affected the quality of the primary measurements of h and e.
   
Note: the DQR begin date is the begin date of the sgp30ebbrE15.b1 data
stream.  The earlier version of the CR10 program was also used on previous
EBBR datastream names (e.g. sgp30ebbrE15.a1).
Measurements:sgp30ebbrE15.b1:
  • latent heat flux(e)
  • average surface soil heat flow at the surface(ave_shf)
  • corrected sensible heat flux(h)


Back To Table of Contents

DQRID : D050719.13
Start DateStart TimeEnd DateEnd Time
04/01/2001000003/30/20051900
Subject:
SGP/EBBR/E20 - Improved EBBR CR10 Program
DataStreams:sgp30ebbrE20.b1
Description:
Effective 20050330.1900, the EBBR.E20 CR10 program was revised to improve 
the quality of the primary measurements as follows:
   
1) An RMS procedure is used to determine max and min limits of acceptable
soil heat flow.  This is applied to the individual soil sets.  Measurements
outside the limits are rejected and the measurements within the limits are
used to calculate the average soil heat flow.
   
2) Max and min limits are used to determine incorrect values of net
radiation, sensible heat flux (h), latent heat flux (e), and automatic
exchange mechanism (AEM) signal.  If AEM signal is outside the limits, h 
and e are set to 999s.  If net radiation is outside the limits, h and e are 
set to 999s. If h or e are outside the limits, h and e are set to 999s.
   
Virtually no incorrect soil measurement will affect the primary 
measurements of h and e.
   
By setting h and e to 999s, it can be easily seen that the primary 
variables are incorrect; no other interpretation is possible.
   
Prior to 20050330, the improved CR10 program was NOT in effect.  DQRs have
been submitted for known instances of incorrect soil measurements which
affected the quality of the primary measurements of h and e.
   
Note: the DQR begin date is the begin date of the sgp30ebbrE20.b1 data
stream.  The earlier version of the CR10 program was also used on previous
EBBR datastream names (e.g. sgp30ebbrE20.a1).
Measurements:sgp30ebbrE20.b1:
  • average surface soil heat flow at the surface(ave_shf)
  • latent heat flux(e)
  • corrected sensible heat flux(h)


Back To Table of Contents

DQRID : D050719.14
Start DateStart TimeEnd DateEnd Time
04/01/2001000003/30/20051930
Subject:
SGP/EBBR/E22 - Improved EBBR CR10 Program
DataStreams:sgp30ebbrE22.b1
Description:
Effective 20050330.1930, the EBBR.E20 CR10 program was revised to improve 
the quality of the primary measurements as follows:
   
1) An RMS procedure is used to determine max and min limits of acceptable
soil heat flow.  This is applied to the individual soil sets.  Measurements
outside the limits are rejected and the measurements within the limits are
used to calculate the average soil heat flow.
   
2) Max and min limits are used to determine incorrect values of net
radiation, sensible heat flux (h), latent heat flux (e), and automatic
exchange mechanism (AEM) signal.  If AEM signal is outside the limits, h 
and e are set to 999s.  If net radiation is outside the limits, h and e are 
set to 999s. If h or e are outside the limits, h and e are set to 999s.
   
Virtually no incorrect soil measurement will affect the primary 
measurements of h and e.
   
By setting h and e to 999s, it can be easily seen that the primary 
variables are incorrect; no other interpretation is possible.
   
Prior to 20050330, the improved CR10 program was NOT in effect.  DQRs have
been submitted for known instances of incorrect soil measurements which
affected the quality of the primary measurements of h and e.
   
Note: the DQR begin date is the begin date of the sgp30ebbrE20.b1 data
stream.  The earlier version of the CR10 program was also used on previous
EBBR datastream names (e.g. sgp30ebbrE20.a1).
Measurements:sgp30ebbrE22.b1:
  • corrected sensible heat flux(h)
  • average surface soil heat flow at the surface(ave_shf)
  • latent heat flux(e)


Back To Table of Contents

DQRID : D050719.16
Start DateStart TimeEnd DateEnd Time
05/07/2003000003/30/20051730
Subject:
SGP/EBBR/E27 - Improved EBBR CR10 Program
DataStreams:sgp30ebbrE27.b1
Description:
Effective 20050330.1730, the EBBR.E27 CR10 program was revised to improve 
the quality of the primary measurements as follows:
   
1) An RMS procedure is used to determine max and min limits of acceptable
soil heat flow.  This is applied to the individual soil sets.  Measurements
outside the limits are rejected and the measurements within the limits are
used to calculate the average soil heat flow.
   
2) Max and min limits are used to determine incorrect values of net
radiation, sensible heat flux (h), latent heat flux (e), and automatic
exchange mechanism (AEM) signal.  If AEM signal is outside the limits, h 
and e are set to 999s.  If net radiation is outside the limits, h and e are 
set to 999s. If h or e are outside the limits, h and e are set to 999s.
   
Virtually no incorrect soil measurement will affect the primary 
measurements of h and e.
   
By setting h and e to 999s, it can be easily seen that the primary 
variables are incorrect; no other interpretation is possible.
   
Prior to 20050330, the improved CR10 program was NOT in effect.  DQRs have
been submitted for known instances of incorrect soil measurements which
affected the quality of the primary measurements of h and e.
   
Note: the DQR begin date is the begin date of the sgp30ebbrE27.b1 data
stream.  The earlier version of the CR10 program was also used on previous
EBBR datastream names (e.g. sgp30ebbrE27.a1).
Measurements:sgp30ebbrE27.b1:
  • average surface soil heat flow at the surface(ave_shf)
  • corrected sensible heat flux(h)
  • latent heat flux(e)


Back To Table of Contents

DQRID : D050719.5
Start DateStart TimeEnd DateEnd Time
04/01/2001000003/23/20051800
Subject:
SGP/EBBR/E4 - Improved EBBR CR10 Program
DataStreams:sgp30ebbrE4.b1
Description:
Effective 20050323.1800, the EBBR.E4 CR10 program was revised to improve the quality of 
the primary measurements as follows:
   
1) An RMS procedure is used to determine max and min limits of acceptable
soil heat flow.  This is applied to the individual soil sets.  Measurements
outside the limits are rejected and the measurements within the limits are
used to calculate the average soil heat flow.
   
2) Max and min limits are used to determine incorrect values of net
radiation, sensible heat flux (h), latent heat flux (e), and automatic
exchange mechanism (AEM) signal.  If AEM signal is outside the limits, h and e are set to 
999s.  If net radiation is outside the limits, h and e are set to 999s. If h or e are 
outside the limits, h and e are set to 999s.
   
Virtually no incorrect soil measurement will affect the primary measurements of h and e.
   
By setting h and e to 999s, it can be easily seen that the primary variables are 
incorrect; no other interpretation is possible.
   
Prior to 20050323, the improved CR10 program was NOT in effect.  DQRs have
been submitted for known instances of incorrect soil measurements which
affected the quality of the primary measurements of h and e.
   
Note: the DQR begin date is the begin date of the sgp30ebbrE4.b1 data
stream.  The earlier version of the CR10 program was also used on previous
EBBR datastream names (e.g. sgp30ebbrE4.a1).
Measurements:sgp30ebbrE4.b1:
  • corrected sensible heat flux(h)
  • average surface soil heat flow at the surface(ave_shf)
  • latent heat flux(e)


Back To Table of Contents

DQRID : D050719.6
Start DateStart TimeEnd DateEnd Time
04/01/2001000003/22/20051900
Subject:
SGP/EBBR/E7 - Improved EBBR CR10 Program
DataStreams:sgp30ebbrE7.b1
Description:
Effective 20050322.1900, the EBBR.E7 CR10 program was revised to improve 
the quality of the primary measurements as follows:
   
1) An RMS procedure is used to determine max and min limits of acceptable
soil heat flow.  This is applied to the individual soil sets.  Measurements
outside the limits are rejected and the measurements within the limits are
used to calculate the average soil heat flow.
   
2) Max and min limits are used to determine incorrect values of net
radiation, sensible heat flux (h), latent heat flux (e), and automatic
exchange mechanism (AEM) signal.  If AEM signal is outside the limits, h 
and e are set to 999s.  If net radiation is outside the limits, h and e are 
set to 999s. If h or e are outside the limits, h and e are set to 999s.
   
Virtually no incorrect soil measurement will affect the primary 
measurements of h and e.
   
By setting h and e to 999s, it can be easily seen that the primary 
variables are incorrect; no other interpretation is possible.
   
Prior to 20050322, the improved CR10 program was NOT in effect.  DQRs have
been submitted for known instances of incorrect soil measurements which
affected the quality of the primary measurements of h and e.
   
Note: the DQR begin date is the begin date of the sgp30ebbrE7.b1 data
stream.  The earlier version of the CR10 program was also used on previous
EBBR datastream names (e.g. sgp30ebbrE7.a1).
Measurements:sgp30ebbrE7.b1:
  • average surface soil heat flow at the surface(ave_shf)
  • corrected sensible heat flux(h)
  • latent heat flux(e)


Back To Table of Contents

DQRID : D050719.7
Start DateStart TimeEnd DateEnd Time
04/01/2001000003/22/20051730
Subject:
SGP/EBBR/E8 - Improved EBBR CR10 Program
DataStreams:sgp30ebbrE8.b1
Description:
Effective 20050322.1730, the EBBR.E8 CR10 program was revised to improve 
the quality of the primary measurements as follows:
   
1) An RMS procedure is used to determine max and min limits of acceptable
soil heat flow.  This is applied to the individual soil sets.  Measurements
outside the limits are rejected and the measurements within the limits are
used to calculate the average soil heat flow.
   
2) Max and min limits are used to determine incorrect values of net
radiation, sensible heat flux (h), latent heat flux (e), and automatic
exchange mechanism (AEM) signal.  If AEM signal is outside the limits, h 
and e are set to 999s.  If net radiation is outside the limits, h and e are 
set to 999s. If h or e are outside the limits, h and e are set to 999s.
   
Virtually no incorrect soil measurement will affect the primary 
measurements of h and e.
   
By setting h and e to 999s, it can be easily seen that the primary 
variables are incorrect; no other interpretation is possible.
   
Prior to 20050322, the improved CR10 program was NOT in effect.  DQRs have
been submitted for known instances of incorrect soil measurements which
affected the quality of the primary measurements of h and e.
   
Note: the DQR begin date is the begin date of the sgp30ebbrE8.b1 data
stream.  The earlier version of the CR10 program was also used on previous
EBBR datastream names (e.g. sgp30ebbrE8.a1).
Measurements:sgp30ebbrE8.b1:
  • average surface soil heat flow at the surface(ave_shf)
  • latent heat flux(e)
  • corrected sensible heat flux(h)


Back To Table of Contents

DQRID : D050719.8
Start DateStart TimeEnd DateEnd Time
04/01/2001000003/22/20051600
Subject:
SGP/EBBR/E9 - Improved EBBR CR10 Program
DataStreams:sgp30ebbrE9.b1
Description:
Effective 20050322.1600, the EBBR.E9 CR10 program was revised to improve 
the quality of the primary measurements as follows:
   
1) An RMS procedure is used to determine max and min limits of acceptable
soil heat flow.  This is applied to the individual soil sets.  Measurements
outside the limits are rejected and the measurements within the limits are
used to calculate the average soil heat flow.
   
2) Max and min limits are used to determine incorrect values of net
radiation, sensible heat flux (h), latent heat flux (e), and automatic
exchange mechanism (AEM) signal.  If AEM signal is outside the limits, h 
and e are set to 999s.  If net radiation is outside the limits, h and e are 
set to 999s. If h or e are outside the limits, h and e are set to 999s.
   
Virtually no incorrect soil measurement will affect the primary 
measurements of h and e.
   
By setting h and e to 999s, it can be easily seen that the primary 
variables are incorrect; no other interpretation is possible.
   
Prior to 20050322, the improved CR10 program was NOT in effect.  DQRs have
been submitted for known instances of incorrect soil measurements which
affected the quality of the primary measurements of h and e.
   
Note: the DQR begin date is the begin date of the sgp30ebbrE9.b1 data
stream.  The earlier version of the CR10 program was also used on previous
EBBR datastream names (e.g. sgp30ebbrE9.a1).
Measurements:sgp30ebbrE9.b1:
  • latent heat flux(e)
  • average surface soil heat flow at the surface(ave_shf)
  • corrected sensible heat flux(h)


Back To Table of Contents

DQRID : D050922.2
Start DateStart TimeEnd DateEnd Time
07/05/2005173007/06/20051930
08/23/2005190008/31/20051700
09/01/2005173009/02/20050300
09/02/2005110009/15/20052230
09/16/2005010009/28/20051830
Subject:
SGP/EBBR/E20 - Soil Temperature and Soil Moisture  #4 Measurements Incorrect
DataStreams:sgp15ebbrE20.b1, sgp30ebbrE20.b1
Description:
The ts4 sensor reported 99999 values because the sensor leads were loose.  Soil moisture 
#4 reported low values (steady 16%) during this time period.

The sensible and latent heat fluxes were not affected by this problem, only
soil temperature and soil moisture #4.  See soil temperatures and soil moistures from sets 
#2, #3, and #5 for correct values (note: soil temperature #1 was having problems during 
the same time).
Measurements:sgp30ebbrE20.b1:
  • Soil moisture 4 (mass water/mass dry soil)(sm4)
  • Soil heat capacity 4(cs4)
  • soil heat flow at the surface 4(g4)
  • 0-5 cm change in soil heat storage with time, site 4(ces4)
  • 0-5 cm integrated soil temperature, site 4(ts4)

sgp15ebbrE20.b1:
  • Soil temperature 4(rr_ts4)
  • Soil moisture 4(r_sm4)


Back To Table of Contents

DQRID : D051024.1
Start DateStart TimeEnd DateEnd Time
09/20/2005203010/07/20051530
Subject:
SGP/EBBR/E7 - Data Missing
DataStreams:sgp5ebbrE7.b1, sgp15ebbrE7.b1, sgp30ebbrE7.b1
Description:
Data was missing because of a communication problem.  However, previously
missing data from 10/07-18 was recovered from the EBRR storage module and ingested, 
thereby reducing the data lost period significantly.
Measurements:sgp15ebbrE7.b1:
  • east longitude for all the input platforms.(lon)
  • Net radiation(mv_q)
  • Soil moisture 2(r_sm2)
  • Temperature of left humidity sensor chamber(rr_thum_l)
  • Soil moisture 3(r_sm3)
  • Soil heat flow 3(mv_hft3)
  • Soil heat flow 4(mv_hft4)
  • north latitude for all the input platforms.(lat)
  • Soil moisture 5(r_sm5)
  • Home signal(mv_home)
  • Wind direction (relative to true north)(mv_wind_d)
  • Soil heat flow 5(mv_hft5)
  • Reference temperature(rr_tref)
  • Time offset from base_time(base_time)
  • Left relative humidity(mv_hum_l)
  • scalar wind speed(wind_s)
  • Battery(bat)
  • Soil heat flow 1(mv_hft1)
  • Right relative humidity(mv_hum_r)
  • Time offset of tweaks from base_time(time_offset)
  • Temperature of right humidity sensor chamber(rr_thum_r)
  • altitude above sea levelaltunits(alt)
  • Soil temperature 4(rr_ts4)
  • Left air temperature(tair_l)
  • Soil temperature 3(rr_ts3)
  • Soil moisture 4(r_sm4)
  • Soil temperature 5(rr_ts5)
  • Soil moisture 1(r_sm1)
  • Soil heat flow 2(mv_hft2)
  • Right air temperature(tair_r)
  • Signature(signature)
  • Soil temperature 1(rr_ts1)
  • Atmospheric pressure(mv_pres)
  • Soil temperature 2(rr_ts2)

sgp5ebbrE7.b1:
  • Time offset from base_time(base_time)
  • north latitude for all the input platforms.(lat)
  • specific humidity(q)
  • top relative humidity(hum_top)
  • east longitude for all the input platforms.(lon)
  • bottom vapor pressure(vp_bot)
  • Time offset of tweaks from base_time(time_offset)
  • pressure at constant pressure surface(pres)
  • bottom relative humidity(hum_bot)
  • top vapor pressure(vp_top)
  • temperature of the top humidity sensor chamber(thum_top)
  • Resultant wind speed(res_ws)
  • bottom air temperature(tair_bot)
  • Home signal(home)
  • top air temperature(tair_top)
  • wind direction (relative to true north)(wind_d)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • scalar wind speed(wind_s)
  • altitude above sea levelaltunits(alt)
  • Time offset from midnight of date of file. For CO data, this is identical to
    time_offset and is included for compatibility.(time)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • Reference Thermistor Temperature(tref)

sgp30ebbrE7.b1:
  • Soil moisture 3 (mass water/mass dry soil)(sm3)
  • east longitude for all the input platforms.(lon)
  • Soil moisture 2 (mass water/mass dry soil)(sm2)
  • wind direction (relative to true north)(wind_d)
  • bottom air temperature(tair_bot)
  • Exchange mechanism position indicator (0 to 15 min)(home_15)
  • Soil moisture 4 (mass water/mass dry soil)(sm4)
  • average surface soil heat flow at the surface(ave_shf)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • 5 cm soil heat flow, site 4(shf4)
  • 0-5 cm integrated soil temperature, site 4(ts4)
  • Soil moisture 5 (mass water/mass dry soil)(sm5)
  • Soil heat capacity 2(cs2)
  • 5 cm soil heat flow, site 3(shf3)
  • 0-5 cm integrated soil temperature, site 5(ts5)
  • top air temperature(tair_top)
  • Soil moisture 1 (mass water/mass dry soil)(sm1)
  • 0-5 cm change in soil heat storage with time, site 2(ces2)
  • 0-5 cm integrated soil temperature, site 2(ts1)
  • top vapor pressure(vp_top)
  • scalar wind speed(wind_s)
  • latent heat flux(e)
  • Resultant wind speed(res_ws)
  • north latitude for all the input platforms.(lat)
  • ratio of sensible/latent heat fluxes (Bowen ratio)(bowen)
  • bottom vapor pressure(vp_bot)
  • top relative humidity(hum_top)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • soil heat flow at the surface 3(g3)
  • 5 cm soil heat flow, site 5(shf5)
  • 5 cm soil heat flow corrected for soil moisture content, site 3(c_shf3)
  • Time offset from base_time(base_time)
  • soil heat flow at the surface 2(g2)
  • Soil heat capacity 1(cs1)
  • bottom relative humidity(hum_bot)
  • Reference Thermistor Temperature(tref)
  • 0-5 cm integrated soil temperature, site 2(ts2)
  • corrected sensible heat flux(h)
  • Soil heat capacity 4(cs4)
  • temperature of the top humidity sensor chamber(thum_top)
  • Soil heat capacity 5(cs5)
  • pressure at constant pressure surface(pres)
  • 0-5 cm change in soil heat storage with time, site 5(ces5)
  • Time offset of tweaks from base_time(time_offset)
  • Exchange mechanism position indicator (15 to 30 min)(home_30)
  • 5 cm soil heat flow corrected for soil moisture content, site 5(c_shf5)
  • 0-5 cm change in soil heat storage with time, site 4(ces4)
  • specific humidity(q)
  • 0-5 cm change in soil heat storage with time, site 2(ces1)
  • 0-5 cm integrated soil temperature, site 3(ts3)
  • soil heat flow at the surface 1(g1)
  • 5 cm soil heat flow corrected for soil moisture content, site 1(c_shf1)
  • soil heat flow at the surface 4(g4)
  • Soil heat capacity 3(cs3)
  • altitude above sea levelaltunits(alt)
  • 0-5 cm change in soil heat storage with time, site 3(ces3)
  • 5 cm soil heat flow corrected for soil moisture content, site 2(c_shf2)
  • soil heat flow at the surface 5(g5)
  • 5 cm soil heat flow corrected for soil moisture content, site 4(c_shf4)
  • 5 cm soil heat flow, site 2(shf2)
  • 5 cm soil heat flow, site 1(shf1)


Back To Table of Contents

DQRID : D051104.1
Start DateStart TimeEnd DateEnd Time
10/31/2005090011/01/20051630
Subject:
SGP/EBBR/E9 - Net Radiation Incorrect: Sensible and Latent Heat Fluxes Incorrect
DataStreams:sgp5ebbrE9.b1, sgp15ebbrE9.b1, sgp30ebbrE9.b1
Description:
Water had entered the top of the net radiometer during the rain on 10/31 early morning.  
The net radiation, and thus sensible and latent heat fluxes were incorreect during the 
stated period.
Measurements:sgp15ebbrE9.b1:
  • Net radiation(mv_q)

sgp5ebbrE9.b1:
  • specific humidity(q)

sgp30ebbrE9.b1:
  • latent heat flux(e)
  • corrected sensible heat flux(h)
  • specific humidity(q)


Back To Table of Contents

DQRID : D051104.2
Start DateStart TimeEnd DateEnd Time
10/01/2005203010/12/20052130
Subject:
SGP/EBBR/E13 - Fluxes Incorrect
DataStreams:sgp5ebbrE13.b1, sgp15ebbrE13.b1, sgp30ebbrE13.b1
Description:
The AEM has not been reaching the home_30 position fully a few times a day on most days, 
resulting in zero home_30 measurements.

The sensible and latent heat fluxes are incorrect when the home_30 measurement is near 
zero.
Measurements:sgp15ebbrE13.b1:
  • Temperature of left humidity sensor chamber(rr_thum_l)
  • Temperature of right humidity sensor chamber(rr_thum_r)
  • Left air temperature(tair_l)
  • Right air temperature(tair_r)

sgp5ebbrE13.b1:
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • top vapor pressure(vp_top)
  • top air temperature(tair_top)
  • temperature of the top humidity sensor chamber(thum_top)
  • bottom vapor pressure(vp_bot)
  • bottom relative humidity(hum_bot)
  • top relative humidity(hum_top)
  • bottom air temperature(tair_bot)

sgp30ebbrE13.b1:
  • bottom relative humidity(hum_bot)
  • ratio of sensible/latent heat fluxes (Bowen ratio)(bowen)
  • bottom vapor pressure(vp_bot)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • temperature of the top humidity sensor chamber(thum_top)
  • latent heat flux(e)
  • corrected sensible heat flux(h)
  • bottom air temperature(tair_bot)
  • top air temperature(tair_top)
  • top relative humidity(hum_top)
  • top vapor pressure(vp_top)


Back To Table of Contents

DQRID : D051104.3
Start DateStart TimeEnd DateEnd Time
08/17/2005223010/05/20051600
Subject:
SGP/EBBR/E13 - Loose connections
DataStreams:sgp5ebbrE13.b1, sgp15ebbrE13.b1, sgp30ebbrE13.b1
Description:
The tair_bot spiked around midday, as if it is temperature related, and may have indicated 
a loose connection.

The sensible and latyent heat fluxes and Bowen ratio were incorrect when this condition 
occurred.
Measurements:sgp15ebbrE13.b1:
  • Left air temperature(tair_l)
  • Right air temperature(tair_r)

sgp5ebbrE13.b1:
  • bottom air temperature(tair_bot)

sgp30ebbrE13.b1:
  • bottom air temperature(tair_bot)
  • ratio of sensible/latent heat fluxes (Bowen ratio)(bowen)
  • latent heat flux(e)
  • corrected sensible heat flux(h)


Back To Table of Contents

DQRID : D051106.12
Start DateStart TimeEnd DateEnd Time
08/04/2005190008/04/20052230
10/06/2005000010/06/20051700
Subject:
SGP/EBBR/E20 - All E20 EBBR Data Missing
DataStreams:sgp5ebbrE20.b1, sgp15ebbrE20.b1, sgp30ebbrE20.b1
Description:
All E20 EBBR data was missing during these periods.
Measurements:sgp30ebbrE20.b1:
  • 5 cm soil heat flow, site 2(shf2)
  • Time offset from base_time(base_time)
  • 5 cm soil heat flow, site 3(shf3)
  • 0-5 cm change in soil heat storage with time, site 4(ces4)
  • Time offset of tweaks from base_time(time_offset)
  • Reference Thermistor Temperature(tref)
  • 0-5 cm change in soil heat storage with time, site 2(ces2)
  • 0-5 cm change in soil heat storage with time, site 5(ces5)
  • Soil heat capacity 3(cs3)
  • 5 cm soil heat flow, site 5(shf5)
  • average surface soil heat flow at the surface(ave_shf)
  • bottom relative humidity(hum_bot)
  • Soil heat capacity 1(cs1)
  • Soil moisture 2 (mass water/mass dry soil)(sm2)
  • Soil heat capacity 4(cs4)
  • top vapor pressure(vp_top)
  • 0-5 cm integrated soil temperature, site 3(ts3)
  • scalar wind speed(wind_s)
  • 0-5 cm integrated soil temperature, site 4(ts4)
  • 5 cm soil heat flow corrected for soil moisture content, site 1(c_shf1)
  • top air temperature(tair_top)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • 0-5 cm integrated soil temperature, site 5(ts5)
  • specific humidity(q)
  • bottom air temperature(tair_bot)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • Soil heat capacity 2(cs2)
  • east longitude for all the input platforms.(lon)
  • Soil moisture 1 (mass water/mass dry soil)(sm1)
  • altitude above sea levelaltunits(alt)
  • soil heat flow at the surface 1(g1)
  • top relative humidity(hum_top)
  • 0-5 cm integrated soil temperature, site 2(ts1)
  • Soil moisture 5 (mass water/mass dry soil)(sm5)
  • 5 cm soil heat flow corrected for soil moisture content, site 5(c_shf5)
  • north latitude for all the input platforms.(lat)
  • 0-5 cm integrated soil temperature, site 2(ts2)
  • Soil moisture 4 (mass water/mass dry soil)(sm4)
  • temperature of the top humidity sensor chamber(thum_top)
  • soil heat flow at the surface 5(g5)
  • ratio of sensible/latent heat fluxes (Bowen ratio)(bowen)
  • latent heat flux(e)
  • corrected sensible heat flux(h)
  • wind direction (relative to true north)(wind_d)
  • Exchange mechanism position indicator (0 to 15 min)(home_15)
  • soil heat flow at the surface 4(g4)
  • pressure at constant pressure surface(pres)
  • 0-5 cm change in soil heat storage with time, site 2(ces1)
  • soil heat flow at the surface 2(g2)
  • Resultant wind speed(res_ws)
  • 5 cm soil heat flow, site 4(shf4)
  • 0-5 cm change in soil heat storage with time, site 3(ces3)
  • Soil moisture 3 (mass water/mass dry soil)(sm3)
  • 5 cm soil heat flow, site 1(shf1)
  • soil heat flow at the surface 3(g3)
  • Soil heat capacity 5(cs5)
  • bottom vapor pressure(vp_bot)
  • 5 cm soil heat flow corrected for soil moisture content, site 4(c_shf4)
  • 5 cm soil heat flow corrected for soil moisture content, site 2(c_shf2)
  • Exchange mechanism position indicator (15 to 30 min)(home_30)
  • 5 cm soil heat flow corrected for soil moisture content, site 3(c_shf3)

sgp15ebbrE20.b1:
  • Soil heat flow 4(mv_hft4)
  • Soil temperature 2(rr_ts2)
  • Soil heat flow 5(mv_hft5)
  • Temperature of right humidity sensor chamber(rr_thum_r)
  • Soil moisture 3(r_sm3)
  • Reference temperature(rr_tref)
  • Soil temperature 3(rr_ts3)
  • Soil temperature 5(rr_ts5)
  • north latitude for all the input platforms.(lat)
  • Soil temperature 4(rr_ts4)
  • Temperature of left humidity sensor chamber(rr_thum_l)
  • east longitude for all the input platforms.(lon)
  • Left air temperature(tair_l)
  • Time offset from base_time(base_time)
  • Soil temperature 1(rr_ts1)
  • Time offset of tweaks from base_time(time_offset)
  • Battery(bat)
  • Net radiation(mv_q)
  • Home signal(mv_home)
  • altitude above sea levelaltunits(alt)
  • Atmospheric pressure(mv_pres)
  • Soil moisture 4(r_sm4)
  • Soil moisture 5(r_sm5)
  • Soil heat flow 1(mv_hft1)
  • Soil heat flow 2(mv_hft2)
  • Signature(signature)
  • Left relative humidity(mv_hum_l)
  • Soil heat flow 3(mv_hft3)
  • scalar wind speed(wind_s)
  • Right air temperature(tair_r)
  • Right relative humidity(mv_hum_r)
  • Wind direction (relative to true north)(mv_wind_d)
  • Soil moisture 2(r_sm2)
  • Soil moisture 1(r_sm1)

sgp5ebbrE20.b1:
  • Resultant wind speed(res_ws)
  • Reference Thermistor Temperature(tref)
  • Home signal(home)
  • wind direction (relative to true north)(wind_d)
  • bottom vapor pressure(vp_bot)
  • pressure at constant pressure surface(pres)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • top vapor pressure(vp_top)
  • specific humidity(q)
  • Time offset from midnight of date of file. For CO data, this is identical to
    time_offset and is included for compatibility.(time)
  • top relative humidity(hum_top)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • bottom relative humidity(hum_bot)
  • top air temperature(tair_top)
  • north latitude for all the input platforms.(lat)
  • east longitude for all the input platforms.(lon)
  • scalar wind speed(wind_s)
  • temperature of the top humidity sensor chamber(thum_top)
  • bottom air temperature(tair_bot)
  • Time offset of tweaks from base_time(time_offset)
  • Time offset from base_time(base_time)
  • altitude above sea levelaltunits(alt)


Back To Table of Contents

DQRID : D051106.13
Start DateStart TimeEnd DateEnd Time
08/27/2005200008/31/20051730
Subject:
SGP/EBBR/E22 - Net Radiation Incorrect; Sensible and Latent Heat Fluxes Incorrect
DataStreams:sgp5ebbrE22.b1, sgp15ebbrE22.b1, sgp30ebbrE22.b1
Description:
The net radiometer top dome was broken and water got inside, making the net radiation, and 
sensible and latent heat flux measurements incorrect.
Measurements:sgp5ebbrE22.b1:
  • specific humidity(q)

sgp30ebbrE22.b1:
  • corrected sensible heat flux(h)
  • specific humidity(q)
  • latent heat flux(e)

sgp15ebbrE22.b1:
  • Net radiation(mv_q)


Back To Table of Contents

DQRID : D051106.15
Start DateStart TimeEnd DateEnd Time
08/05/2005220008/17/20051600
Subject:
SGP/EBBR/E27 - Net Radiation Incorrect; Sensible and Latent Heat Fluxes Incorrect
DataStreams:sgp5ebbrE27.b1, sgp15ebbrE27.b1, sgp30ebbrE27.b1
Description:
The net radiometer top dome was broken and water got inside, making the net radiation, and 
sensible and latent heat flux measurements incorrect.
Measurements:sgp5ebbrE27.b1:
  • specific humidity(q)

sgp30ebbrE27.b1:
  • corrected sensible heat flux(h)
  • latent heat flux(e)
  • specific humidity(q)

sgp15ebbrE27.b1:
  • Net radiation(mv_q)


Back To Table of Contents

DQRID : D051106.16
Start DateStart TimeEnd DateEnd Time
08/17/2005163008/27/20051930
Subject:
SGP/EBBR/E27 - Net Radiation Incorrect; Sensible and Latent Heat Fluxes Incorredt
DataStreams:sgp5ebbrE27.b1, sgp15ebbrE27.b1, sgp30ebbrE27.b1
Description:
Residual Moisture left in the top dome of the net radiometer after the 8/17/05 servicing 
caused the net radiation measurements to be biased low, and resulting in sensible and 
latent heat flux being low also.
Measurements:sgp5ebbrE27.b1:
  • specific humidity(q)

sgp30ebbrE27.b1:
  • corrected sensible heat flux(h)
  • latent heat flux(e)
  • specific humidity(q)

sgp15ebbrE27.b1:
  • Net radiation(mv_q)


Back To Table of Contents

DQRID : D051106.17
Start DateStart TimeEnd DateEnd Time
09/15/2005180009/21/20050300
Subject:
SGP/EBBR/E27 - All E27 EBBR Data is Missing
DataStreams:sgp5ebbrE27.b1, sgp15ebbrE27.b1, sgp30ebbrE27.b1
Description:
All E27 EBBR data was missing from this period.
Measurements:sgp5ebbrE27.b1:
  • Resultant wind speed(res_ws)
  • specific humidity(q)
  • altitude above sea levelaltunits(alt)
  • bottom relative humidity(hum_bot)
  • Reference Thermistor Temperature(tref)
  • pressure at constant pressure surface(pres)
  • top relative humidity(hum_top)
  • north latitude for all the input platforms.(lat)
  • Time offset of tweaks from base_time(time_offset)
  • scalar wind speed(wind_s)
  • temperature of the top humidity sensor chamber(thum_top)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • wind direction (relative to true north)(wind_d)
  • Home signal(home)
  • top vapor pressure(vp_top)
  • bottom air temperature(tair_bot)
  • Time offset from midnight of date of file. For CO data, this is identical to
    time_offset and is included for compatibility.(time)
  • Time offset from base_time(base_time)
  • top air temperature(tair_top)
  • east longitude for all the input platforms.(lon)
  • bottom vapor pressure(vp_bot)
  • standard deviation of wind direction (sigma theta)(sigma_wd)

sgp30ebbrE27.b1:
  • 0-5 cm change in soil heat storage with time, site 2(ces1)
  • Reference Thermistor Temperature(tref)
  • temperature of the top humidity sensor chamber(thum_top)
  • Exchange mechanism position indicator (0 to 15 min)(home_15)
  • Soil moisture 5 (mass water/mass dry soil)(sm5)
  • specific humidity(q)
  • 5 cm soil heat flow corrected for soil moisture content, site 2(c_shf2)
  • Resultant wind speed(res_ws)
  • 5 cm soil heat flow, site 5(shf5)
  • Soil moisture 4 (mass water/mass dry soil)(sm4)
  • Soil moisture 1 (mass water/mass dry soil)(sm1)
  • 0-5 cm change in soil heat storage with time, site 2(ces2)
  • soil heat flow at the surface 5(g5)
  • soil heat flow at the surface 3(g3)
  • 5 cm soil heat flow corrected for soil moisture content, site 5(c_shf5)
  • Soil moisture 3 (mass water/mass dry soil)(sm3)
  • top relative humidity(hum_top)
  • soil heat flow at the surface 2(g2)
  • soil heat flow at the surface 1(g1)
  • top vapor pressure(vp_top)
  • Exchange mechanism position indicator (15 to 30 min)(home_30)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • bottom relative humidity(hum_bot)
  • bottom air temperature(tair_bot)
  • 0-5 cm integrated soil temperature, site 4(ts4)
  • 0-5 cm integrated soil temperature, site 2(ts1)
  • north latitude for all the input platforms.(lat)
  • soil heat flow at the surface 4(g4)
  • wind direction (relative to true north)(wind_d)
  • altitude above sea levelaltunits(alt)
  • Soil heat capacity 5(cs5)
  • Soil heat capacity 1(cs1)
  • Soil heat capacity 4(cs4)
  • 0-5 cm integrated soil temperature, site 5(ts5)
  • ratio of sensible/latent heat fluxes (Bowen ratio)(bowen)
  • latent heat flux(e)
  • Time offset from base_time(base_time)
  • pressure at constant pressure surface(pres)
  • 0-5 cm integrated soil temperature, site 3(ts3)
  • 0-5 cm integrated soil temperature, site 2(ts2)
  • 0-5 cm change in soil heat storage with time, site 5(ces5)
  • Soil heat capacity 2(cs2)
  • Soil heat capacity 3(cs3)
  • bottom vapor pressure(vp_bot)
  • east longitude for all the input platforms.(lon)
  • Time offset of tweaks from base_time(time_offset)
  • 5 cm soil heat flow corrected for soil moisture content, site 3(c_shf3)
  • 0-5 cm change in soil heat storage with time, site 4(ces4)
  • top air temperature(tair_top)
  • 0-5 cm change in soil heat storage with time, site 3(ces3)
  • 5 cm soil heat flow, site 2(shf2)
  • 5 cm soil heat flow corrected for soil moisture content, site 4(c_shf4)
  • 5 cm soil heat flow, site 3(shf3)
  • Soil moisture 2 (mass water/mass dry soil)(sm2)
  • scalar wind speed(wind_s)
  • 5 cm soil heat flow, site 4(shf4)
  • 5 cm soil heat flow corrected for soil moisture content, site 1(c_shf1)
  • 5 cm soil heat flow, site 1(shf1)
  • average surface soil heat flow at the surface(ave_shf)
  • corrected sensible heat flux(h)
  • temperature of the bottom humidity sensor chamber(thum_bot)

sgp15ebbrE27.b1:
  • Soil moisture 5(r_sm5)
  • Reference temperature(rr_tref)
  • Battery(bat)
  • Left air temperature(tair_l)
  • north latitude for all the input platforms.(lat)
  • Soil temperature 3(rr_ts3)
  • Temperature of left humidity sensor chamber(rr_thum_l)
  • Soil temperature 4(rr_ts4)
  • Soil moisture 2(r_sm2)
  • east longitude for all the input platforms.(lon)
  • scalar wind speed(wind_s)
  • Soil temperature 5(rr_ts5)
  • Right air temperature(tair_r)
  • Soil moisture 3(r_sm3)
  • Left relative humidity(mv_hum_l)
  • Time offset from base_time(base_time)
  • Soil moisture 4(r_sm4)
  • Time offset of tweaks from base_time(time_offset)
  • Soil heat flow 1(mv_hft1)
  • Net radiation(mv_q)
  • Soil heat flow 3(mv_hft3)
  • Soil heat flow 4(mv_hft4)
  • Soil heat flow 5(mv_hft5)
  • Right relative humidity(mv_hum_r)
  • Soil temperature 1(rr_ts1)
  • Atmospheric pressure(mv_pres)
  • Signature(signature)
  • altitude above sea levelaltunits(alt)
  • Temperature of right humidity sensor chamber(rr_thum_r)
  • Soil moisture 1(r_sm1)
  • Soil temperature 2(rr_ts2)
  • Wind direction (relative to true north)(mv_wind_d)
  • Soil heat flow 2(mv_hft2)
  • Home signal(mv_home)


Back To Table of Contents

DQRID : D051106.19
Start DateStart TimeEnd DateEnd Time
03/09/2005173003/23/20051800
Subject:
SGP/EBBR/E4 - Average Soil Heat Flux Incorrect
DataStreams:sgp30ebbrE4.b1
Description:
A typo in the version 9 EBBR program caused average soil heat flow to be zero, resulting 
in both sensible and latent heat fluxes being approximately 20 watts per meter squared too 
large during the middle of the day.
Measurements:sgp30ebbrE4.b1:
  • corrected sensible heat flux(h)
  • average surface soil heat flow at the surface(ave_shf)
  • latent heat flux(e)


Back To Table of Contents

DQRID : D051106.2
Start DateStart TimeEnd DateEnd Time
07/04/2005010007/13/20050330
Subject:
SGP/EBBR/E4 - All EBBR Data Missing
DataStreams:sgp5ebbrE4.b1, sgp15ebbrE4.b1, sgp30ebbrE4.b1
Description:
The data was missing during this period.
Measurements:sgp5ebbrE4.b1:
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • bottom air temperature(tair_bot)
  • altitude above sea levelaltunits(alt)
  • Resultant wind speed(res_ws)
  • scalar wind speed(wind_s)
  • temperature of the top humidity sensor chamber(thum_top)
  • pressure at constant pressure surface(pres)
  • top relative humidity(hum_top)
  • east longitude for all the input platforms.(lon)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • Reference Thermistor Temperature(tref)
  • bottom relative humidity(hum_bot)
  • Time offset of tweaks from base_time(time_offset)
  • specific humidity(q)
  • Time offset from base_time(base_time)
  • Time offset from midnight of date of file. For CO data, this is identical to
    time_offset and is included for compatibility.(time)
  • north latitude for all the input platforms.(lat)
  • bottom vapor pressure(vp_bot)
  • top vapor pressure(vp_top)
  • top air temperature(tair_top)
  • wind direction (relative to true north)(wind_d)
  • Home signal(home)

sgp30ebbrE4.b1:
  • Soil heat capacity 3(cs3)
  • 5 cm soil heat flow corrected for soil moisture content, site 1(c_shf1)
  • bottom relative humidity(hum_bot)
  • Soil heat capacity 2(cs2)
  • Soil heat capacity 5(cs5)
  • latent heat flux(e)
  • 0-5 cm change in soil heat storage with time, site 2(ces2)
  • pressure at constant pressure surface(pres)
  • specific humidity(q)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • Exchange mechanism position indicator (0 to 15 min)(home_15)
  • Soil moisture 1 (mass water/mass dry soil)(sm1)
  • Soil heat capacity 4(cs4)
  • Soil moisture 4 (mass water/mass dry soil)(sm4)
  • ratio of sensible/latent heat fluxes (Bowen ratio)(bowen)
  • 5 cm soil heat flow corrected for soil moisture content, site 3(c_shf3)
  • Soil moisture 3 (mass water/mass dry soil)(sm3)
  • Soil moisture 2 (mass water/mass dry soil)(sm2)
  • bottom vapor pressure(vp_bot)
  • Resultant wind speed(res_ws)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • 0-5 cm integrated soil temperature, site 4(ts4)
  • Soil moisture 5 (mass water/mass dry soil)(sm5)
  • Exchange mechanism position indicator (15 to 30 min)(home_30)
  • 0-5 cm integrated soil temperature, site 2(ts1)
  • Soil heat capacity 1(cs1)
  • soil heat flow at the surface 1(g1)
  • north latitude for all the input platforms.(lat)
  • 5 cm soil heat flow corrected for soil moisture content, site 4(c_shf4)
  • 0-5 cm integrated soil temperature, site 2(ts2)
  • wind direction (relative to true north)(wind_d)
  • temperature of the top humidity sensor chamber(thum_top)
  • soil heat flow at the surface 5(g5)
  • altitude above sea levelaltunits(alt)
  • 5 cm soil heat flow, site 2(shf2)
  • Time offset of tweaks from base_time(time_offset)
  • top vapor pressure(vp_top)
  • average surface soil heat flow at the surface(ave_shf)
  • 0-5 cm integrated soil temperature, site 5(ts5)
  • Time offset from base_time(base_time)
  • scalar wind speed(wind_s)
  • 5 cm soil heat flow corrected for soil moisture content, site 5(c_shf5)
  • 0-5 cm integrated soil temperature, site 3(ts3)
  • 5 cm soil heat flow, site 1(shf1)
  • east longitude for all the input platforms.(lon)
  • 5 cm soil heat flow corrected for soil moisture content, site 2(c_shf2)
  • bottom air temperature(tair_bot)
  • soil heat flow at the surface 4(g4)
  • top relative humidity(hum_top)
  • 5 cm soil heat flow, site 5(shf5)
  • 0-5 cm change in soil heat storage with time, site 5(ces5)
  • Reference Thermistor Temperature(tref)
  • 0-5 cm change in soil heat storage with time, site 4(ces4)
  • 5 cm soil heat flow, site 3(shf3)
  • 0-5 cm change in soil heat storage with time, site 3(ces3)
  • 5 cm soil heat flow, site 4(shf4)
  • soil heat flow at the surface 3(g3)
  • corrected sensible heat flux(h)
  • top air temperature(tair_top)
  • soil heat flow at the surface 2(g2)
  • 0-5 cm change in soil heat storage with time, site 2(ces1)

sgp15ebbrE4.b1:
  • east longitude for all the input platforms.(lon)
  • Home signal(mv_home)
  • Soil heat flow 3(mv_hft3)
  • Wind direction (relative to true north)(mv_wind_d)
  • Right air temperature(tair_r)
  • Left air temperature(tair_l)
  • Soil heat flow 2(mv_hft2)
  • Time offset of tweaks from base_time(time_offset)
  • north latitude for all the input platforms.(lat)
  • scalar wind speed(wind_s)
  • Right relative humidity(mv_hum_r)
  • Soil temperature 5(rr_ts5)
  • Net radiation(mv_q)
  • Time offset from base_time(base_time)
  • Soil temperature 2(rr_ts2)
  • Signature(signature)
  • Reference temperature(rr_tref)
  • Temperature of left humidity sensor chamber(rr_thum_l)
  • Temperature of right humidity sensor chamber(rr_thum_r)
  • Soil temperature 3(rr_ts3)
  • Soil temperature 1(rr_ts1)
  • Soil moisture 4(r_sm4)
  • Soil moisture 1(r_sm1)
  • Soil temperature 4(rr_ts4)
  • Soil moisture 3(r_sm3)
  • Soil moisture 2(r_sm2)
  • Soil heat flow 1(mv_hft1)
  • Soil heat flow 5(mv_hft5)
  • Left relative humidity(mv_hum_l)
  • Battery(bat)
  • Atmospheric pressure(mv_pres)
  • altitude above sea levelaltunits(alt)
  • Soil moisture 5(r_sm5)
  • Soil heat flow 4(mv_hft4)


Back To Table of Contents

DQRID : D051106.20
Start DateStart TimeEnd DateEnd Time
03/08/2005200003/22/20051900
Subject:
SGP/EBBR/E7 - Average Soil Heat Flux Incorrect
DataStreams:sgp30ebbrE7.b1
Description:
A typo in the version 9 EBBR program caused average soil heat flow to be zero, resulting 
in both sensible and latent heat fluxes being approximately 20 watts per meter squared too 
large during the middle of the day.
Measurements:sgp30ebbrE7.b1:
  • average surface soil heat flow at the surface(ave_shf)
  • corrected sensible heat flux(h)
  • latent heat flux(e)


Back To Table of Contents

DQRID : D051106.21
Start DateStart TimeEnd DateEnd Time
03/08/2005180003/22/20051730
Subject:
SGP/EBBR/E8 - Average Soil Heat Flux Incorrect
DataStreams:sgp30ebbrE8.b1
Description:
A typo in the version 9 EBBR program caused average soil heat flow to be zero, resulting 
in both sensible and latent heat fluxes being approximately 20 watts per meter squared too 
large during the middle of the day.
Measurements:sgp30ebbrE8.b1:
  • average surface soil heat flow at the surface(ave_shf)
  • latent heat flux(e)
  • corrected sensible heat flux(h)


Back To Table of Contents

DQRID : D051106.22
Start DateStart TimeEnd DateEnd Time
03/08/2005163003/22/20051600
Subject:
SGP/EBBR/E9 - Average Soil Heat Flux Incorrect
DataStreams:sgp30ebbrE9.b1
Description:
A typo in the version 9 EBBR program caused average soil heat flow to be zero, resulting 
in both sensible and latent heat fluxes being approximately 20 watts per meter squared too 
large during the middle of the day.
Measurements:sgp30ebbrE9.b1:
  • latent heat flux(e)
  • average surface soil heat flow at the surface(ave_shf)
  • corrected sensible heat flux(h)


Back To Table of Contents

DQRID : D051106.24
Start DateStart TimeEnd DateEnd Time
03/03/2005213003/31/20052100
Subject:
SGP/EBBR/E13 - Average Soil Heat Flux Incorrect
DataStreams:sgp30ebbrE13.b1
Description:
A typo in the version 9 EBBR program caused average soil heat flow to be zero, resulting 
in both sensible and latent heat fluxes being approximately 20 watts per meter squared too 
large during the middle of the day.
Measurements:sgp30ebbrE13.b1:
  • average surface soil heat flow at the surface(ave_shf)
  • latent heat flux(e)
  • corrected sensible heat flux(h)


Back To Table of Contents

DQRID : D051106.25
Start DateStart TimeEnd DateEnd Time
03/01/2005180003/29/20051900
Subject:
SGP/EBBR/E15 - Average Soil Heat Flux Incorrect
DataStreams:sgp30ebbrE15.b1
Description:
A typo in the version 9 EBBR program caused average soil heat flow to be zero, resulting 
in both sensible and latent heat fluxes being approximately 20 watts per meter squared too 
large during the middle of the day.
Measurements:sgp30ebbrE15.b1:
  • latent heat flux(e)
  • average surface soil heat flow at the surface(ave_shf)
  • corrected sensible heat flux(h)


Back To Table of Contents

DQRID : D051106.28
Start DateStart TimeEnd DateEnd Time
03/02/2005190003/30/20051900
Subject:
SGP/EBBR/E20 - Average Soil Heat Flux Incorrect
DataStreams:sgp30ebbrE20.b1
Description:
A typo in the version 9 EBBR program caused average soil heat flow to be zero, resulting 
in both sensible and latent heat fluxes being approximately 20 watts per meter squared too 
large during the middle of the day.
Measurements:sgp30ebbrE20.b1:
  • average surface soil heat flow at the surface(ave_shf)
  • latent heat flux(e)
  • corrected sensible heat flux(h)


Back To Table of Contents

DQRID : D051106.29
Start DateStart TimeEnd DateEnd Time
03/16/2005183003/30/20051930
Subject:
SGP/EBBR/E22 - Average Soil Heat Flux Incorrect
DataStreams:sgp30ebbrE22.b1
Description:
A typo in the version 9 EBBR program caused average soil heat flow to be zero, resulting 
in both sensible and latent heat fluxes being approximately 20 watts per meter squared too 
large during the middle of the day.
Measurements:sgp30ebbrE22.b1:
  • corrected sensible heat flux(h)
  • average surface soil heat flow at the surface(ave_shf)
  • latent heat flux(e)


Back To Table of Contents

DQRID : D051106.3
Start DateStart TimeEnd DateEnd Time
09/14/2005000009/20/20052000
Subject:
SGP/EBBR/E7 - Net Radiation Incorrect; Sensible and Latent Heat Fluxes Incorrect
DataStreams:sgp5ebbrE7.b1, sgp15ebbrE7.b1, sgp30ebbrE7.b1
Description:
The top dome of the net radiometer was cracked; net radiation, and sensible and latent 
heat flux measurements were incorrect.
Measurements:sgp15ebbrE7.b1:
  • Net radiation(mv_q)

sgp30ebbrE7.b1:
  • specific humidity(q)
  • corrected sensible heat flux(h)
  • latent heat flux(e)

sgp5ebbrE7.b1:
  • specific humidity(q)


Back To Table of Contents

DQRID : D051106.31
Start DateStart TimeEnd DateEnd Time
03/02/2005160003/30/20051730
Subject:
SGP/EBBR/E27 - Average Soil Heat Flux Incorrect
DataStreams:sgp30ebbrE27.b1
Description:
A typo in the version 9 EBBR program caused average soil heat flow to be zero, resulting 
in both sensible and latent heat fluxes being approximately 20 watts per meter squared too 
large during the middle of the day.
Measurements:sgp30ebbrE27.b1:
  • average surface soil heat flow at the surface(ave_shf)
  • corrected sensible heat flux(h)
  • latent heat flux(e)


Back To Table of Contents

DQRID : D051106.4
Start DateStart TimeEnd DateEnd Time
06/28/2005193006/28/20051930
Subject:
SGP/EBBR/E8 - Soil Heat Flow #2 Incorrect
DataStreams:sgp15ebbrE8.b1, sgp30ebbrE8.b1
Description:
Soil Heat Flow #2 spiked upwards briefly at 1930 GMT.
Measurements:sgp30ebbrE8.b1:
  • soil heat flow at the surface 2(g2)
  • 5 cm soil heat flow corrected for soil moisture content, site 2(c_shf2)
  • 5 cm soil heat flow, site 2(shf2)

sgp15ebbrE8.b1:
  • Soil heat flow 2(mv_hft2)


Back To Table of Contents

DQRID : D051106.5
Start DateStart TimeEnd DateEnd Time
08/04/2005200008/09/20052030
Subject:
SGP/EBBR/E8 - Net Radiation Incorrect; Sensible and Latent Heat Fluxes Incorrect
DataStreams:sgp5ebbrE8.b1, sgp15ebbrE8.b1, sgp30ebbrE8.b1
Description:
The top dome of the net radiometer was cracked and water had gotten inside it, so net 
radiation, and sensible and latent heat fluxes were incorrect.
Measurements:sgp30ebbrE8.b1:
  • latent heat flux(e)
  • specific humidity(q)
  • corrected sensible heat flux(h)

sgp5ebbrE8.b1:
  • specific humidity(q)

sgp15ebbrE8.b1:
  • Net radiation(mv_q)


Back To Table of Contents

DQRID : D051106.6
Start DateStart TimeEnd DateEnd Time
09/25/2005053009/30/20051000
Subject:
SGP/EBBR/E9 - All EBBR Data Missing
DataStreams:sgp5ebbrE9.b1, sgp15ebbrE9.b1, sgp30ebbrE9.b1
Description:
All of the EBBR data was missing.
Measurements:sgp15ebbrE9.b1:
  • Time offset of tweaks from base_time(time_offset)
  • north latitude for all the input platforms.(lat)
  • Soil moisture 2(r_sm2)
  • Soil moisture 3(r_sm3)
  • Soil moisture 1(r_sm1)
  • Time offset from base_time(base_time)
  • Soil temperature 4(rr_ts4)
  • Right relative humidity(mv_hum_r)
  • Soil heat flow 1(mv_hft1)
  • Soil temperature 5(rr_ts5)
  • Right air temperature(tair_r)
  • Temperature of left humidity sensor chamber(rr_thum_l)
  • Soil temperature 1(rr_ts1)
  • Soil temperature 3(rr_ts3)
  • Soil temperature 2(rr_ts2)
  • Soil heat flow 3(mv_hft3)
  • altitude above sea levelaltunits(alt)
  • Soil heat flow 4(mv_hft4)
  • Atmospheric pressure(mv_pres)
  • Soil moisture 4(r_sm4)
  • Home signal(mv_home)
  • Net radiation(mv_q)
  • Wind direction (relative to true north)(mv_wind_d)
  • Reference temperature(rr_tref)
  • Left relative humidity(mv_hum_l)
  • Battery(bat)
  • east longitude for all the input platforms.(lon)
  • Soil heat flow 5(mv_hft5)
  • Temperature of right humidity sensor chamber(rr_thum_r)
  • Soil heat flow 2(mv_hft2)
  • Signature(signature)
  • scalar wind speed(wind_s)
  • Left air temperature(tair_l)
  • Soil moisture 5(r_sm5)

sgp5ebbrE9.b1:
  • top vapor pressure(vp_top)
  • north latitude for all the input platforms.(lat)
  • Time offset from base_time(base_time)
  • Time offset of tweaks from base_time(time_offset)
  • temperature of the top humidity sensor chamber(thum_top)
  • Reference Thermistor Temperature(tref)
  • scalar wind speed(wind_s)
  • pressure at constant pressure surface(pres)
  • top relative humidity(hum_top)
  • bottom vapor pressure(vp_bot)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • Resultant wind speed(res_ws)
  • bottom air temperature(tair_bot)
  • altitude above sea levelaltunits(alt)
  • specific humidity(q)
  • Time offset from midnight of date of file. For CO data, this is identical to
    time_offset and is included for compatibility.(time)
  • top air temperature(tair_top)
  • wind direction (relative to true north)(wind_d)
  • Home signal(home)
  • bottom relative humidity(hum_bot)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • east longitude for all the input platforms.(lon)

sgp30ebbrE9.b1:
  • bottom vapor pressure(vp_bot)
  • corrected sensible heat flux(h)
  • top vapor pressure(vp_top)
  • bottom air temperature(tair_bot)
  • bottom relative humidity(hum_bot)
  • Soil moisture 2 (mass water/mass dry soil)(sm2)
  • Soil heat capacity 3(cs3)
  • 5 cm soil heat flow, site 2(shf2)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • Soil moisture 3 (mass water/mass dry soil)(sm3)
  • 5 cm soil heat flow corrected for soil moisture content, site 5(c_shf5)
  • Resultant wind speed(res_ws)
  • Soil heat capacity 5(cs5)
  • east longitude for all the input platforms.(lon)
  • Exchange mechanism position indicator (0 to 15 min)(home_15)
  • ratio of sensible/latent heat fluxes (Bowen ratio)(bowen)
  • Soil heat capacity 4(cs4)
  • scalar wind speed(wind_s)
  • Soil moisture 1 (mass water/mass dry soil)(sm1)
  • temperature of the top humidity sensor chamber(thum_top)
  • Time offset from base_time(base_time)
  • Soil heat capacity 1(cs1)
  • north latitude for all the input platforms.(lat)
  • wind direction (relative to true north)(wind_d)
  • soil heat flow at the surface 1(g1)
  • 0-5 cm change in soil heat storage with time, site 2(ces2)
  • 0-5 cm integrated soil temperature, site 4(ts4)
  • Soil moisture 4 (mass water/mass dry soil)(sm4)
  • 5 cm soil heat flow, site 5(shf5)
  • soil heat flow at the surface 4(g4)
  • pressure at constant pressure surface(pres)
  • Time offset of tweaks from base_time(time_offset)
  • 0-5 cm integrated soil temperature, site 3(ts3)
  • soil heat flow at the surface 2(g2)
  • 5 cm soil heat flow, site 1(shf1)
  • Soil moisture 5 (mass water/mass dry soil)(sm5)
  • 5 cm soil heat flow corrected for soil moisture content, site 4(c_shf4)
  • altitude above sea levelaltunits(alt)
  • Exchange mechanism position indicator (15 to 30 min)(home_30)
  • specific humidity(q)
  • 5 cm soil heat flow, site 3(shf3)
  • top relative humidity(hum_top)
  • 0-5 cm integrated soil temperature, site 5(ts5)
  • Soil heat capacity 2(cs2)
  • 0-5 cm integrated soil temperature, site 2(ts2)
  • 5 cm soil heat flow corrected for soil moisture content, site 3(c_shf3)
  • 0-5 cm change in soil heat storage with time, site 4(ces4)
  • Reference Thermistor Temperature(tref)
  • 5 cm soil heat flow, site 4(shf4)
  • 0-5 cm integrated soil temperature, site 2(ts1)
  • 0-5 cm change in soil heat storage with time, site 5(ces5)
  • soil heat flow at the surface 3(g3)
  • 5 cm soil heat flow corrected for soil moisture content, site 2(c_shf2)
  • top air temperature(tair_top)
  • 0-5 cm change in soil heat storage with time, site 2(ces1)
  • 5 cm soil heat flow corrected for soil moisture content, site 1(c_shf1)
  • latent heat flux(e)
  • soil heat flow at the surface 5(g5)
  • 0-5 cm change in soil heat storage with time, site 3(ces3)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • average surface soil heat flow at the surface(ave_shf)


Back To Table of Contents

DQRID : D051106.8
Start DateStart TimeEnd DateEnd Time
07/11/2005143007/12/20052100
08/05/2005173008/08/20050730
08/20/2005153008/21/20052200
Subject:
SGP/EBBR/E13 - All EBBR Data Missing
DataStreams:sgp5ebbrE13.b1, sgp15ebbrE13.b1, sgp30ebbrE13.b1
Description:
All E13 EBBR data was missing during these three periods.
Measurements:sgp15ebbrE13.b1:
  • Soil moisture 2(r_sm2)
  • east longitude for all the input platforms.(lon)
  • Time offset from base_time(base_time)
  • Soil heat flow 2(mv_hft2)
  • Soil moisture 3(r_sm3)
  • Soil heat flow 3(mv_hft3)
  • Soil moisture 4(r_sm4)
  • Wind direction (relative to true north)(mv_wind_d)
  • Soil moisture 1(r_sm1)
  • Home signal(mv_home)
  • Temperature of right humidity sensor chamber(rr_thum_r)
  • north latitude for all the input platforms.(lat)
  • Left relative humidity(mv_hum_l)
  • Time offset of tweaks from base_time(time_offset)
  • Soil moisture 5(r_sm5)
  • Reference temperature(rr_tref)
  • Net radiation(mv_q)
  • Signature(signature)
  • Temperature of left humidity sensor chamber(rr_thum_l)
  • scalar wind speed(wind_s)
  • Soil heat flow 1(mv_hft1)
  • Soil heat flow 4(mv_hft4)
  • Soil temperature 3(rr_ts3)
  • Soil temperature 4(rr_ts4)
  • Soil temperature 5(rr_ts5)
  • Right relative humidity(mv_hum_r)
  • Soil heat flow 5(mv_hft5)
  • Soil temperature 2(rr_ts2)
  • Left air temperature(tair_l)
  • Atmospheric pressure(mv_pres)
  • altitude above sea levelaltunits(alt)
  • Soil temperature 1(rr_ts1)
  • Right air temperature(tair_r)
  • Battery(bat)

sgp5ebbrE13.b1:
  • Time offset from base_time(base_time)
  • Home signal(home)
  • top air temperature(tair_top)
  • Reference Thermistor Temperature(tref)
  • altitude above sea levelaltunits(alt)
  • east longitude for all the input platforms.(lon)
  • bottom vapor pressure(vp_bot)
  • bottom relative humidity(hum_bot)
  • Time offset from midnight of date of file. For CO data, this is identical to
    time_offset and is included for compatibility.(time)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • north latitude for all the input platforms.(lat)
  • specific humidity(q)
  • temperature of the top humidity sensor chamber(thum_top)
  • Resultant wind speed(res_ws)
  • Time offset of tweaks from base_time(time_offset)
  • top vapor pressure(vp_top)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • wind direction (relative to true north)(wind_d)
  • pressure at constant pressure surface(pres)
  • scalar wind speed(wind_s)
  • top relative humidity(hum_top)
  • bottom air temperature(tair_bot)

sgp30ebbrE13.b1:
  • 0-5 cm change in soil heat storage with time, site 2(ces2)
  • 5 cm soil heat flow corrected for soil moisture content, site 1(c_shf1)
  • ratio of sensible/latent heat fluxes (Bowen ratio)(bowen)
  • 0-5 cm change in soil heat storage with time, site 3(ces3)
  • Soil heat capacity 4(cs4)
  • average surface soil heat flow at the surface(ave_shf)
  • 5 cm soil heat flow, site 4(shf4)
  • top vapor pressure(vp_top)
  • Soil moisture 4 (mass water/mass dry soil)(sm4)
  • 0-5 cm change in soil heat storage with time, site 2(ces1)
  • Soil moisture 5 (mass water/mass dry soil)(sm5)
  • Exchange mechanism position indicator (0 to 15 min)(home_15)
  • soil heat flow at the surface 3(g3)
  • Reference Thermistor Temperature(tref)
  • bottom air temperature(tair_bot)
  • Time offset from base_time(base_time)
  • 0-5 cm integrated soil temperature, site 2(ts1)
  • soil heat flow at the surface 2(g2)
  • 5 cm soil heat flow corrected for soil moisture content, site 4(c_shf4)
  • corrected sensible heat flux(h)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • Soil moisture 2 (mass water/mass dry soil)(sm2)
  • 5 cm soil heat flow, site 1(shf1)
  • scalar wind speed(wind_s)
  • top air temperature(tair_top)
  • top relative humidity(hum_top)
  • Exchange mechanism position indicator (15 to 30 min)(home_30)
  • 5 cm soil heat flow corrected for soil moisture content, site 5(c_shf5)
  • Soil heat capacity 3(cs3)
  • 5 cm soil heat flow, site 2(shf2)
  • Time offset of tweaks from base_time(time_offset)
  • 5 cm soil heat flow corrected for soil moisture content, site 3(c_shf3)
  • wind direction (relative to true north)(wind_d)
  • 5 cm soil heat flow corrected for soil moisture content, site 2(c_shf2)
  • Resultant wind speed(res_ws)
  • bottom relative humidity(hum_bot)
  • pressure at constant pressure surface(pres)
  • soil heat flow at the surface 1(g1)
  • soil heat flow at the surface 4(g4)
  • 0-5 cm integrated soil temperature, site 5(ts5)
  • Soil heat capacity 2(cs2)
  • bottom vapor pressure(vp_bot)
  • temperature of the top humidity sensor chamber(thum_top)
  • latent heat flux(e)
  • Soil heat capacity 1(cs1)
  • north latitude for all the input platforms.(lat)
  • specific humidity(q)
  • Soil moisture 3 (mass water/mass dry soil)(sm3)
  • 5 cm soil heat flow, site 3(shf3)
  • Soil moisture 1 (mass water/mass dry soil)(sm1)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • 5 cm soil heat flow, site 5(shf5)
  • east longitude for all the input platforms.(lon)
  • 0-5 cm change in soil heat storage with time, site 4(ces4)
  • 0-5 cm integrated soil temperature, site 2(ts2)
  • 0-5 cm integrated soil temperature, site 3(ts3)
  • soil heat flow at the surface 5(g5)
  • 0-5 cm integrated soil temperature, site 4(ts4)
  • Soil heat capacity 5(cs5)
  • 0-5 cm change in soil heat storage with time, site 5(ces5)
  • altitude above sea levelaltunits(alt)


Back To Table of Contents

DQRID : D051106.9
Start DateStart TimeEnd DateEnd Time
07/15/2005213007/19/20051700
Subject:
SGP/EBBR/E15 - Soil Set #5 Temperature, Moisture, and Heat Flow Incorrect
DataStreams:sgp15ebbrE15.b1, sgp30ebbrE15.b1
Description:
Rodents chewed the cables on all three soil set #5 sensors, making the measurements 
incorrect.
Measurements:sgp15ebbrE15.b1:
  • Soil heat flow 5(mv_hft5)
  • Soil temperature 5(rr_ts5)
  • Soil moisture 5(r_sm5)

sgp30ebbrE15.b1:
  • 5 cm soil heat flow corrected for soil moisture content, site 5(c_shf5)
  • 0-5 cm change in soil heat storage with time, site 5(ces5)
  • 0-5 cm integrated soil temperature, site 5(ts5)
  • soil heat flow at the surface 5(g5)
  • Soil heat capacity 5(cs5)
  • 5 cm soil heat flow, site 5(shf5)
  • Soil moisture 5 (mass water/mass dry soil)(sm5)


Back To Table of Contents

DQRID : D051111.11
Start DateStart TimeEnd DateEnd Time
10/13/2003000007/22/20052359
Subject:
SGP/EBBR/E13 - metadata corrections
DataStreams:sgp5ebbrE13.b1, sgp15ebbrE13.b1, sgp30ebbrE13.b1
Description:
On 20050723, a series of metadata corrections and additions were completed.  These 
metadata changes apply to all EBBR.E13 data collected by ARM back to the installation of the 
instrument in September 1992.  Please see the current metadata for correct information.  
These changes do not affect data values or quality.

The changes are summarized below:
1) Update of "sensor location" information
2) Addition of installation dates for systems
3) Correction of soil type
4) Correction of soil moisture units (from "by volume" to "gravimetric")
Measurements:sgp15ebbrE13.b1:
  • Time offset from base_time(base_time)

sgp5ebbrE13.b1:
  • Time offset from base_time(base_time)

sgp30ebbrE13.b1:
  • Time offset from base_time(base_time)


Back To Table of Contents

DQRID : D051111.12
Start DateStart TimeEnd DateEnd Time
10/13/2003000007/22/20052359
Subject:
SGP/EBBR/E15 - metadata corrections
DataStreams:sgp5ebbrE15.b1, sgp15ebbrE15.b1, sgp30ebbrE15.b1
Description:
On 20050723, a series of metadata corrections and additions were completed.  These 
metadata changes apply to all EBBR.E15 data collected by ARM back to the installation of the 
instrument in September 1992. Please see the current metadata for correct information.  
These changes do not affect data values or quality.	

The changes are summarized below:
1) Update of "sensor location" information
2) Addition of installation dates for the systems
3) Correction of soil type
4) Correction of soil moisture units (from "by volume" to "gravimetric")
Measurements:sgp15ebbrE15.b1:
  • Time offset from base_time(base_time)

sgp30ebbrE15.b1:
  • Time offset from base_time(base_time)

sgp5ebbrE15.b1:
  • Time offset from base_time(base_time)


Back To Table of Contents

DQRID : D051112.10
Start DateStart TimeEnd DateEnd Time
10/13/2003000008/16/20052359
Subject:
SGP/EBBR/E27 - metadata corrections
DataStreams:sgp5ebbrE27.b1, sgp15ebbrE27.b1, sgp30ebbrE27.b1
Description:
On 20050816, a series of metadata corrections and additions were completed.  These 
metadata changes apply to all EBBR.E27 data collected by ARM back to the installation of the 
instrument in May 2003. Please see the current metadata for correct information.  These 
changes do not affect data values or quality.	

The changes are summarized below:
1) Update of "sensor location" information
2) Addition of installation dates for the systems
3) Correction of soil moisture units (from "by volume" to "gravimetric")
Measurements:sgp30ebbrE27.b1:
  • Time offset from base_time(base_time)

sgp5ebbrE27.b1:
  • Time offset from base_time(base_time)

sgp15ebbrE27.b1:
  • Time offset from base_time(base_time)


Back To Table of Contents

DQRID : D051112.3
Start DateStart TimeEnd DateEnd Time
10/14/2003000008/16/20052359
Subject:
SGP/EBBR/E4 - metadata corrections
DataStreams:sgp5ebbrE4.b1, sgp15ebbrE4.b1, sgp30ebbrE4.b1
Description:
On 20050817, a series of metadata corrections and additions were completed.  These 
metadata changes apply to all EBBR.E4 data collected by ARM back to the installation of the 
instrument in April 1993. Please see the current metadata for correct information.  These 
changes do not affect data values or quality.	

The changes are summarized below:
1) Update of "sensor location" information
2) Addition of installation dates for the systems
3) Correction of soil moisture units (from "by volume" to "gravimetric")
Measurements:sgp5ebbrE4.b1:
  • Time offset from base_time(base_time)

sgp30ebbrE4.b1:
  • Time offset from base_time(base_time)

sgp15ebbrE4.b1:
  • Time offset from base_time(base_time)


Back To Table of Contents

DQRID : D051112.4
Start DateStart TimeEnd DateEnd Time
10/13/2003000007/22/20052359
Subject:
SGP/EBBR/E7 - metadata corrections
DataStreams:sgp5ebbrE7.b1, sgp15ebbrE7.b1, sgp30ebbrE7.b1
Description:
On 20050723, a series of metadata corrections and additions were completed.  These 
metadata changes apply to all EBBR.E7 data collected by ARM back to the installation of the 
instrument in May 1993. Please see the current metadata for correct information.  These 
changes do not affect data values or quality.	

The changes are summarized below:
1) Update of "sensor location" information
2) Addition of installation dates for the systems
3) Correction of soil moisture units (from "by volume" to "gravimetric")
Measurements:sgp5ebbrE7.b1:
  • Time offset from base_time(base_time)

sgp30ebbrE7.b1:
  • Time offset from base_time(base_time)

sgp15ebbrE7.b1:
  • Time offset from base_time(base_time)


Back To Table of Contents

DQRID : D051112.5
Start DateStart TimeEnd DateEnd Time
10/13/2003000007/22/20052359
Subject:
SGP/EBBR/E8 - metadata corrections
DataStreams:sgp5ebbrE8.b1, sgp15ebbrE8.b1, sgp30ebbrE8.b1
Description:
On 20050723, a series of metadata corrections and additions were completed.  These 
metadata changes apply to all EBBR.E8 data collected by ARM back to the installation of the 
instrument in December 1992. Please see the current metadata for correct information.  These 
changes do not affect data values or quality.	

The changes are summarized below:
1) Update of "sensor location" information
2) Addition of installation dates for the systems
3) Correction of soil moisture units (from "by volume" to "gravimetric")
Measurements:sgp30ebbrE8.b1:
  • Time offset from base_time(base_time)

sgp5ebbrE8.b1:
  • Time offset from base_time(base_time)

sgp15ebbrE8.b1:
  • Time offset from base_time(base_time)


Back To Table of Contents

DQRID : D051112.6
Start DateStart TimeEnd DateEnd Time
10/13/2003000004/19/20052359
Subject:
SGP/EBBR/E9 - metadata corrections
DataStreams:sgp5ebbrE9.b1, sgp15ebbrE9.b1, sgp30ebbrE9.b1
Description:
On 20050420, a series of metadata corrections and additions were completed.  These 
metadata changes apply to all EBBR.E9 data collected by ARM back to the installation of the 
instrument in December 1992. Please see the current metadata for correct information.  These 
changes do not affect data values or quality.	

The changes are summarized below:
1) Update of "sensor location" information
2) Addition of installation dates for the systems
3) Correction of soil moisture units (from "by volume" to "gravimetric")
Measurements:sgp15ebbrE9.b1:
  • Time offset from base_time(base_time)

sgp5ebbrE9.b1:
  • Time offset from base_time(base_time)

sgp30ebbrE9.b1:
  • Time offset from base_time(base_time)


Back To Table of Contents

DQRID : D051112.7
Start DateStart TimeEnd DateEnd Time
10/15/2003000007/22/20052359
Subject:
SGP/EBBR/E20 - metadata corrections
DataStreams:sgp5ebbrE20.b1, sgp15ebbrE20.b1, sgp30ebbrE20.b1
Description:
On 20050723, a series of metadata corrections and additions were completed.  These 
metadata changes apply to all EBBR.E20 data collected by ARM back to the installation of the 
instrument in April 1993. Please see the current metadata for correct information.  These 
changes do not
affect data values or quality.	

The changes are summarized below:
1) Update of "sensor location" information
2) Addition of installation dates for the systems
3) Correction of soil moisture units (from "by volume" to "gravimetric")
Measurements:sgp30ebbrE20.b1:
  • Time offset from base_time(base_time)

sgp15ebbrE20.b1:
  • Time offset from base_time(base_time)

sgp5ebbrE20.b1:
  • Time offset from base_time(base_time)


Back To Table of Contents

DQRID : D051112.8
Start DateStart TimeEnd DateEnd Time
10/13/2003000007/22/20052359
Subject:
SGP/EBBR/E22 - metadata corrections
DataStreams:sgp5ebbrE22.b1, sgp15ebbrE22.b1, sgp30ebbrE22.b1
Description:
On 20050723, a series of metadata corrections and additions were completed.  These 
metadata changes apply to all EBBR.E22 data collected by ARM back to the installation of the 
instrument in April 1993. Please see the current metadata for correct information.  These 
changes do not affect data values or quality.	

The changes are summarized below:
1) Update of "sensor location" information
2) Addition of installation dates for the systems
3) Correction of soil type
4) Correction of soil moisture units (from "by volume" to "gravimetric")
Measurements:sgp30ebbrE22.b1:
  • Time offset from base_time(base_time)

sgp5ebbrE22.b1:
  • Time offset from base_time(base_time)

sgp15ebbrE22.b1:
  • Time offset from base_time(base_time)


Back To Table of Contents

DQRID : D051215.1
Start DateStart TimeEnd DateEnd Time
10/20/2005131511/02/20050330
Subject:
SGP/EBBR/E4 - Net Radiation, Sensible and Latent Heat Fluxes Incorrect
DataStreams:sgp5ebbrE4.b1, sgp15ebbrE4.b1, sgp30ebbrE4.b1
Description:
The top dome of the net radiometer was broken, resulting in net radiations that were too 
small, and thus sensible and latent heat fluxes that were too small.
Measurements:sgp5ebbrE4.b1:
  • specific humidity(q)

sgp30ebbrE4.b1:
  • specific humidity(q)
  • corrected sensible heat flux(h)
  • latent heat flux(e)

sgp15ebbrE4.b1:
  • Net radiation(mv_q)


Back To Table of Contents

DQRID : D051215.2
Start DateStart TimeEnd DateEnd Time
10/30/2005070011/01/20051615
Subject:
SGP/EBBR/E9 - Net Radiation, Sensible and Latent Heat Fluxes Incorrect
DataStreams:sgp5ebbrE9.b1, sgp15ebbrE9.b1, sgp30ebbrE9.b1
Description:
The top dome of the net radiometer was broken, resulting in net radiations that were too 
small, and thus sensible and latent heat fluxes that were too small.
Measurements:sgp15ebbrE9.b1:
  • Net radiation(mv_q)

sgp5ebbrE9.b1:
  • specific humidity(q)

sgp30ebbrE9.b1:
  • latent heat flux(e)
  • corrected sensible heat flux(h)
  • specific humidity(q)


Back To Table of Contents

DQRID : D051215.3
Start DateStart TimeEnd DateEnd Time
10/30/2005000011/08/20051815
Subject:
SGP/EBBR/E15 - Net Radiation, Sensible and Latent Heat Fluxes Incorrect.
DataStreams:sgp5ebbrE15.b1, sgp15ebbrE15.b1, sgp30ebbrE15.b1
Description:
The top dome of the net radiometer was broken, resulting in net radiations that were too 
small, and thus sensible and latent heat fluxes that were too small.
Measurements:sgp15ebbrE15.b1:
  • Net radiation(mv_q)

sgp30ebbrE15.b1:
  • specific humidity(q)
  • latent heat flux(e)
  • corrected sensible heat flux(h)

sgp5ebbrE15.b1:
  • specific humidity(q)


Back To Table of Contents

DQRID : D051215.4
Start DateStart TimeEnd DateEnd Time
11/14/2005180511/21/20051830
Subject:
SGP/EBBR/E15 - Missing Data
DataStreams:sgp5ebbrE15.b1, sgp15ebbrE15.b1, sgp30ebbrE15.b1
Description:
Data was missing for the period.
Measurements:sgp15ebbrE15.b1:
  • Soil temperature 4(rr_ts4)
  • Left relative humidity(mv_hum_l)
  • Left air temperature(tair_l)
  • Soil heat flow 5(mv_hft5)
  • Time offset of tweaks from base_time(time_offset)
  • Soil temperature 5(rr_ts5)
  • Soil temperature 2(rr_ts2)
  • scalar wind speed(wind_s)
  • Reference temperature(rr_tref)
  • Wind direction (relative to true north)(mv_wind_d)
  • Home signal(mv_home)
  • Soil heat flow 3(mv_hft3)
  • Temperature of left humidity sensor chamber(rr_thum_l)
  • Soil temperature 3(rr_ts3)
  • Time offset from base_time(base_time)
  • Temperature of right humidity sensor chamber(rr_thum_r)
  • Soil moisture 1(r_sm1)
  • Right relative humidity(mv_hum_r)
  • Soil heat flow 2(mv_hft2)
  • Right air temperature(tair_r)
  • Soil moisture 5(r_sm5)
  • Soil heat flow 4(mv_hft4)
  • Soil moisture 3(r_sm3)
  • Net radiation(mv_q)
  • Soil moisture 2(r_sm2)
  • Atmospheric pressure(mv_pres)
  • Soil heat flow 1(mv_hft1)
  • Signature(signature)
  • Soil moisture 4(r_sm4)
  • altitude above sea levelaltunits(alt)
  • Battery(bat)
  • north latitude for all the input platforms.(lat)
  • Soil temperature 1(rr_ts1)
  • east longitude for all the input platforms.(lon)

sgp30ebbrE15.b1:
  • 5 cm soil heat flow, site 2(shf2)
  • Time offset from base_time(base_time)
  • pressure at constant pressure surface(pres)
  • specific humidity(q)
  • altitude above sea levelaltunits(alt)
  • 5 cm soil heat flow, site 5(shf5)
  • scalar wind speed(wind_s)
  • Resultant wind speed(res_ws)
  • east longitude for all the input platforms.(lon)
  • soil heat flow at the surface 1(g1)
  • 5 cm soil heat flow, site 3(shf3)
  • Reference Thermistor Temperature(tref)
  • 5 cm soil heat flow corrected for soil moisture content, site 1(c_shf1)
  • top air temperature(tair_top)
  • 0-5 cm change in soil heat storage with time, site 2(ces1)
  • Soil heat capacity 3(cs3)
  • Soil heat capacity 4(cs4)
  • 5 cm soil heat flow corrected for soil moisture content, site 5(c_shf5)
  • soil heat flow at the surface 2(g2)
  • Soil heat capacity 2(cs2)
  • top relative humidity(hum_top)
  • Soil heat capacity 1(cs1)
  • 5 cm soil heat flow corrected for soil moisture content, site 2(c_shf2)
  • bottom relative humidity(hum_bot)
  • Soil moisture 3 (mass water/mass dry soil)(sm3)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • 5 cm soil heat flow corrected for soil moisture content, site 3(c_shf3)
  • soil heat flow at the surface 3(g3)
  • bottom vapor pressure(vp_bot)
  • 0-5 cm change in soil heat storage with time, site 3(ces3)
  • 0-5 cm change in soil heat storage with time, site 4(ces4)
  • Soil moisture 2 (mass water/mass dry soil)(sm2)
  • latent heat flux(e)
  • Soil moisture 1 (mass water/mass dry soil)(sm1)
  • temperature of the top humidity sensor chamber(thum_top)
  • soil heat flow at the surface 5(g5)
  • Soil moisture 4 (mass water/mass dry soil)(sm4)
  • Exchange mechanism position indicator (15 to 30 min)(home_30)
  • soil heat flow at the surface 4(g4)
  • wind direction (relative to true north)(wind_d)
  • top vapor pressure(vp_top)
  • Time offset of tweaks from base_time(time_offset)
  • 5 cm soil heat flow, site 1(shf1)
  • 5 cm soil heat flow corrected for soil moisture content, site 4(c_shf4)
  • average surface soil heat flow at the surface(ave_shf)
  • 0-5 cm change in soil heat storage with time, site 2(ces2)
  • Soil moisture 5 (mass water/mass dry soil)(sm5)
  • north latitude for all the input platforms.(lat)
  • 0-5 cm integrated soil temperature, site 2(ts2)
  • Exchange mechanism position indicator (0 to 15 min)(home_15)
  • ratio of sensible/latent heat fluxes (Bowen ratio)(bowen)
  • Soil heat capacity 5(cs5)
  • bottom air temperature(tair_bot)
  • 5 cm soil heat flow, site 4(shf4)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • 0-5 cm integrated soil temperature, site 2(ts1)
  • 0-5 cm integrated soil temperature, site 5(ts5)
  • 0-5 cm integrated soil temperature, site 3(ts3)
  • 0-5 cm integrated soil temperature, site 4(ts4)
  • 0-5 cm change in soil heat storage with time, site 5(ces5)
  • corrected sensible heat flux(h)

sgp5ebbrE15.b1:
  • east longitude for all the input platforms.(lon)
  • Home signal(home)
  • north latitude for all the input platforms.(lat)
  • top vapor pressure(vp_top)
  • scalar wind speed(wind_s)
  • top relative humidity(hum_top)
  • Reference Thermistor Temperature(tref)
  • Time offset from midnight of date of file. For CO data, this is identical to
    time_offset and is included for compatibility.(time)
  • Time offset of tweaks from base_time(time_offset)
  • top air temperature(tair_top)
  • pressure at constant pressure surface(pres)
  • bottom vapor pressure(vp_bot)
  • altitude above sea levelaltunits(alt)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • Time offset from base_time(base_time)
  • wind direction (relative to true north)(wind_d)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • specific humidity(q)
  • bottom air temperature(tair_bot)
  • Resultant wind speed(res_ws)
  • bottom relative humidity(hum_bot)
  • temperature of the top humidity sensor chamber(thum_top)


Back To Table of Contents

DQRID : D060111.11
Start DateStart TimeEnd DateEnd Time
11/27/2005000012/18/20051200
Subject:
SGP/EBBR/E15 - Reprocess: Sensible and Latent Heat Fluxes, Soil Set #2 Sometimes Incorrect
DataStreams:sgp30ebbrE15.b1
Description:
Spikes in soil set #2 sometimes caused sensible and latent heat fluxes to be incorrect.  

There is no electronic connection between the soil set #2 sensors, so it is suspected that 
there was a problem in the soil set #2 cable bundle. A power outage ensued, after which 
the soil set #2 problem did not re-occur.
Measurements:sgp30ebbrE15.b1:
  • latent heat flux(e)
  • 0-5 cm integrated soil temperature, site 2(ts2)
  • 5 cm soil heat flow, site 2(shf2)
  • 5 cm soil heat flow corrected for soil moisture content, site 2(c_shf2)
  • average surface soil heat flow at the surface(ave_shf)
  • Soil moisture 2 (mass water/mass dry soil)(sm2)
  • soil heat flow at the surface 2(g2)
  • Soil heat capacity 2(cs2)
  • 0-5 cm change in soil heat storage with time, site 2(ces2)
  • corrected sensible heat flux(h)


Back To Table of Contents

DQRID : D060111.12
Start DateStart TimeEnd DateEnd Time
12/18/2005123012/21/20051730
Subject:
SGP/EBBR/E15 - Data Missing
DataStreams:sgp5ebbrE15.b1, sgp15ebbrE15.b1, sgp30ebbrE15.b1
Description:
Data was missing during a power outage after the power fuse blew.
Measurements:sgp15ebbrE15.b1:
  • Soil temperature 4(rr_ts4)
  • Left relative humidity(mv_hum_l)
  • Left air temperature(tair_l)
  • Soil heat flow 5(mv_hft5)
  • Time offset of tweaks from base_time(time_offset)
  • Soil temperature 5(rr_ts5)
  • Soil temperature 2(rr_ts2)
  • scalar wind speed(wind_s)
  • Reference temperature(rr_tref)
  • Wind direction (relative to true north)(mv_wind_d)
  • Home signal(mv_home)
  • Soil heat flow 3(mv_hft3)
  • Temperature of left humidity sensor chamber(rr_thum_l)
  • Soil temperature 3(rr_ts3)
  • Time offset from base_time(base_time)
  • Temperature of right humidity sensor chamber(rr_thum_r)
  • Soil moisture 1(r_sm1)
  • Right relative humidity(mv_hum_r)
  • Soil heat flow 2(mv_hft2)
  • Right air temperature(tair_r)
  • Soil moisture 5(r_sm5)
  • Soil heat flow 4(mv_hft4)
  • Soil moisture 3(r_sm3)
  • Net radiation(mv_q)
  • Soil moisture 2(r_sm2)
  • Atmospheric pressure(mv_pres)
  • Soil heat flow 1(mv_hft1)
  • Signature(signature)
  • Soil moisture 4(r_sm4)
  • altitude above sea levelaltunits(alt)
  • Battery(bat)
  • north latitude for all the input platforms.(lat)
  • Soil temperature 1(rr_ts1)
  • east longitude for all the input platforms.(lon)

sgp30ebbrE15.b1:
  • 5 cm soil heat flow, site 2(shf2)
  • Time offset from base_time(base_time)
  • pressure at constant pressure surface(pres)
  • specific humidity(q)
  • altitude above sea levelaltunits(alt)
  • 5 cm soil heat flow, site 5(shf5)
  • scalar wind speed(wind_s)
  • Resultant wind speed(res_ws)
  • east longitude for all the input platforms.(lon)
  • soil heat flow at the surface 1(g1)
  • 5 cm soil heat flow, site 3(shf3)
  • Reference Thermistor Temperature(tref)
  • 5 cm soil heat flow corrected for soil moisture content, site 1(c_shf1)
  • top air temperature(tair_top)
  • 0-5 cm change in soil heat storage with time, site 2(ces1)
  • Soil heat capacity 3(cs3)
  • Soil heat capacity 4(cs4)
  • 5 cm soil heat flow corrected for soil moisture content, site 5(c_shf5)
  • soil heat flow at the surface 2(g2)
  • Soil heat capacity 2(cs2)
  • top relative humidity(hum_top)
  • Soil heat capacity 1(cs1)
  • 5 cm soil heat flow corrected for soil moisture content, site 2(c_shf2)
  • bottom relative humidity(hum_bot)
  • Soil moisture 3 (mass water/mass dry soil)(sm3)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • 5 cm soil heat flow corrected for soil moisture content, site 3(c_shf3)
  • soil heat flow at the surface 3(g3)
  • bottom vapor pressure(vp_bot)
  • 0-5 cm change in soil heat storage with time, site 3(ces3)
  • 0-5 cm change in soil heat storage with time, site 4(ces4)
  • Soil moisture 2 (mass water/mass dry soil)(sm2)
  • latent heat flux(e)
  • Soil moisture 1 (mass water/mass dry soil)(sm1)
  • temperature of the top humidity sensor chamber(thum_top)
  • soil heat flow at the surface 5(g5)
  • Soil moisture 4 (mass water/mass dry soil)(sm4)
  • Exchange mechanism position indicator (15 to 30 min)(home_30)
  • soil heat flow at the surface 4(g4)
  • wind direction (relative to true north)(wind_d)
  • top vapor pressure(vp_top)
  • Time offset of tweaks from base_time(time_offset)
  • 5 cm soil heat flow, site 1(shf1)
  • 5 cm soil heat flow corrected for soil moisture content, site 4(c_shf4)
  • average surface soil heat flow at the surface(ave_shf)
  • 0-5 cm change in soil heat storage with time, site 2(ces2)
  • Soil moisture 5 (mass water/mass dry soil)(sm5)
  • north latitude for all the input platforms.(lat)
  • 0-5 cm integrated soil temperature, site 2(ts2)
  • Exchange mechanism position indicator (0 to 15 min)(home_15)
  • ratio of sensible/latent heat fluxes (Bowen ratio)(bowen)
  • Soil heat capacity 5(cs5)
  • bottom air temperature(tair_bot)
  • 5 cm soil heat flow, site 4(shf4)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • 0-5 cm integrated soil temperature, site 2(ts1)
  • 0-5 cm integrated soil temperature, site 5(ts5)
  • 0-5 cm integrated soil temperature, site 3(ts3)
  • 0-5 cm integrated soil temperature, site 4(ts4)
  • 0-5 cm change in soil heat storage with time, site 5(ces5)
  • corrected sensible heat flux(h)

sgp5ebbrE15.b1:
  • east longitude for all the input platforms.(lon)
  • Home signal(home)
  • north latitude for all the input platforms.(lat)
  • top vapor pressure(vp_top)
  • scalar wind speed(wind_s)
  • top relative humidity(hum_top)
  • Reference Thermistor Temperature(tref)
  • Time offset from midnight of date of file. For CO data, this is identical to
    time_offset and is included for compatibility.(time)
  • Time offset of tweaks from base_time(time_offset)
  • top air temperature(tair_top)
  • pressure at constant pressure surface(pres)
  • bottom vapor pressure(vp_bot)
  • altitude above sea levelaltunits(alt)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • Time offset from base_time(base_time)
  • wind direction (relative to true north)(wind_d)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • specific humidity(q)
  • bottom air temperature(tair_bot)
  • Resultant wind speed(res_ws)
  • bottom relative humidity(hum_bot)
  • temperature of the top humidity sensor chamber(thum_top)


Back To Table of Contents

DQRID : D060111.13
Start DateStart TimeEnd DateEnd Time
12/21/2005093012/21/20051730
Subject:
SGP/EBBR/E20 - Data Incorrect During J-Panel Replacement
DataStreams:sgp5ebbrE20.b1, sgp15ebbrE20.b1, sgp30ebbrE20.b1
Description:
Much of the data was incorrect during replacement of J-Panel #1.
Measurements:sgp30ebbrE20.b1:
  • 5 cm soil heat flow, site 2(shf2)
  • Time offset from base_time(base_time)
  • 5 cm soil heat flow, site 3(shf3)
  • 0-5 cm change in soil heat storage with time, site 4(ces4)
  • Time offset of tweaks from base_time(time_offset)
  • Reference Thermistor Temperature(tref)
  • 0-5 cm change in soil heat storage with time, site 2(ces2)
  • 0-5 cm change in soil heat storage with time, site 5(ces5)
  • Soil heat capacity 3(cs3)
  • 5 cm soil heat flow, site 5(shf5)
  • average surface soil heat flow at the surface(ave_shf)
  • bottom relative humidity(hum_bot)
  • Soil heat capacity 1(cs1)
  • Soil moisture 2 (mass water/mass dry soil)(sm2)
  • Soil heat capacity 4(cs4)
  • top vapor pressure(vp_top)
  • 0-5 cm integrated soil temperature, site 3(ts3)
  • scalar wind speed(wind_s)
  • 0-5 cm integrated soil temperature, site 4(ts4)
  • 5 cm soil heat flow corrected for soil moisture content, site 1(c_shf1)
  • top air temperature(tair_top)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • 0-5 cm integrated soil temperature, site 5(ts5)
  • specific humidity(q)
  • bottom air temperature(tair_bot)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • Soil heat capacity 2(cs2)
  • east longitude for all the input platforms.(lon)
  • Soil moisture 1 (mass water/mass dry soil)(sm1)
  • altitude above sea levelaltunits(alt)
  • soil heat flow at the surface 1(g1)
  • top relative humidity(hum_top)
  • 0-5 cm integrated soil temperature, site 2(ts1)
  • Soil moisture 5 (mass water/mass dry soil)(sm5)
  • 5 cm soil heat flow corrected for soil moisture content, site 5(c_shf5)
  • north latitude for all the input platforms.(lat)
  • 0-5 cm integrated soil temperature, site 2(ts2)
  • Soil moisture 4 (mass water/mass dry soil)(sm4)
  • temperature of the top humidity sensor chamber(thum_top)
  • soil heat flow at the surface 5(g5)
  • ratio of sensible/latent heat fluxes (Bowen ratio)(bowen)
  • latent heat flux(e)
  • corrected sensible heat flux(h)
  • wind direction (relative to true north)(wind_d)
  • Exchange mechanism position indicator (0 to 15 min)(home_15)
  • soil heat flow at the surface 4(g4)
  • pressure at constant pressure surface(pres)
  • 0-5 cm change in soil heat storage with time, site 2(ces1)
  • soil heat flow at the surface 2(g2)
  • Resultant wind speed(res_ws)
  • 5 cm soil heat flow, site 4(shf4)
  • 0-5 cm change in soil heat storage with time, site 3(ces3)
  • Soil moisture 3 (mass water/mass dry soil)(sm3)
  • 5 cm soil heat flow, site 1(shf1)
  • soil heat flow at the surface 3(g3)
  • Soil heat capacity 5(cs5)
  • bottom vapor pressure(vp_bot)
  • 5 cm soil heat flow corrected for soil moisture content, site 4(c_shf4)
  • 5 cm soil heat flow corrected for soil moisture content, site 2(c_shf2)
  • Exchange mechanism position indicator (15 to 30 min)(home_30)
  • 5 cm soil heat flow corrected for soil moisture content, site 3(c_shf3)

sgp15ebbrE20.b1:
  • Soil heat flow 4(mv_hft4)
  • Soil temperature 2(rr_ts2)
  • Soil heat flow 5(mv_hft5)
  • Temperature of right humidity sensor chamber(rr_thum_r)
  • Soil moisture 3(r_sm3)
  • Reference temperature(rr_tref)
  • Soil temperature 3(rr_ts3)
  • Soil temperature 5(rr_ts5)
  • north latitude for all the input platforms.(lat)
  • Soil temperature 4(rr_ts4)
  • Temperature of left humidity sensor chamber(rr_thum_l)
  • east longitude for all the input platforms.(lon)
  • Left air temperature(tair_l)
  • Time offset from base_time(base_time)
  • Soil temperature 1(rr_ts1)
  • Time offset of tweaks from base_time(time_offset)
  • Battery(bat)
  • Net radiation(mv_q)
  • Home signal(mv_home)
  • altitude above sea levelaltunits(alt)
  • Atmospheric pressure(mv_pres)
  • Soil moisture 4(r_sm4)
  • Soil moisture 5(r_sm5)
  • Soil heat flow 1(mv_hft1)
  • Soil heat flow 2(mv_hft2)
  • Signature(signature)
  • Left relative humidity(mv_hum_l)
  • Soil heat flow 3(mv_hft3)
  • scalar wind speed(wind_s)
  • Right air temperature(tair_r)
  • Right relative humidity(mv_hum_r)
  • Wind direction (relative to true north)(mv_wind_d)
  • Soil moisture 2(r_sm2)
  • Soil moisture 1(r_sm1)

sgp5ebbrE20.b1:
  • Resultant wind speed(res_ws)
  • Reference Thermistor Temperature(tref)
  • Home signal(home)
  • wind direction (relative to true north)(wind_d)
  • bottom vapor pressure(vp_bot)
  • pressure at constant pressure surface(pres)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • top vapor pressure(vp_top)
  • specific humidity(q)
  • Time offset from midnight of date of file. For CO data, this is identical to
    time_offset and is included for compatibility.(time)
  • top relative humidity(hum_top)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • bottom relative humidity(hum_bot)
  • top air temperature(tair_top)
  • north latitude for all the input platforms.(lat)
  • east longitude for all the input platforms.(lon)
  • scalar wind speed(wind_s)
  • temperature of the top humidity sensor chamber(thum_top)
  • bottom air temperature(tair_bot)
  • Time offset of tweaks from base_time(time_offset)
  • Time offset from base_time(base_time)
  • altitude above sea levelaltunits(alt)


Back To Table of Contents

DQRID : D060111.2
Start DateStart TimeEnd DateEnd Time
12/18/2005040012/28/20051630
Subject:
SGP/EBBR/E4 - Sensible and Latent Heat Fluxes Incorrect
DataStreams:sgp5ebbrE4.b1, sgp15ebbrE4.b1, sgp30ebbrE4.b1
Description:
The AEM hung at one position for an extended period, causing sensible and latent heat 
fluxes and gradient measurements to be incorrect.
Measurements:sgp5ebbrE4.b1:
  • bottom vapor pressure(vp_bot)
  • bottom relative humidity(hum_bot)
  • top vapor pressure(vp_top)
  • temperature of the top humidity sensor chamber(thum_top)
  • top relative humidity(hum_top)
  • bottom air temperature(tair_bot)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • top air temperature(tair_top)

sgp30ebbrE4.b1:
  • ratio of sensible/latent heat fluxes (Bowen ratio)(bowen)
  • bottom relative humidity(hum_bot)
  • top vapor pressure(vp_top)
  • bottom air temperature(tair_bot)
  • latent heat flux(e)
  • bottom vapor pressure(vp_bot)
  • top relative humidity(hum_top)
  • corrected sensible heat flux(h)
  • top air temperature(tair_top)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • temperature of the top humidity sensor chamber(thum_top)

sgp15ebbrE4.b1:
  • Left air temperature(tair_l)
  • Right air temperature(tair_r)


Back To Table of Contents

DQRID : D060111.3
Start DateStart TimeEnd DateEnd Time
12/04/2005170002/20/20062230
Subject:
SGP/EBBR/E7 - Barometric Pressure Incorrect
DataStreams:sgp5ebbrE7.b1, sgp15ebbrE7.b1, sgp30ebbrE7.b1
Description:
The pressure measurement sometimes dropped to zero during daytime because of 
unstable battery voltage.
Measurements:sgp15ebbrE7.b1:
  • Atmospheric pressure(mv_pres)

sgp30ebbrE7.b1:
  • pressure at constant pressure surface(pres)

sgp5ebbrE7.b1:
  • pressure at constant pressure surface(pres)


Back To Table of Contents

DQRID : D060111.4
Start DateStart TimeEnd DateEnd Time
11/26/2005190001/10/20061630
Subject:
SGP/EBBR/E8 - AEM Not Exchanging
DataStreams:sgp5ebbrE8.b1, sgp15ebbrE8.b1, sgp30ebbrE8.b1
Description:
The AEM hung in one position frequently and sometimes for many days during this period

While the AEM was not switching, the sensible and latent heat fluxes and gradient 
measurements were incorrect.
Measurements:sgp30ebbrE8.b1:
  • latent heat flux(e)
  • bottom air temperature(tair_bot)
  • corrected sensible heat flux(h)
  • bottom relative humidity(hum_bot)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • ratio of sensible/latent heat fluxes (Bowen ratio)(bowen)
  • top vapor pressure(vp_top)
  • top air temperature(tair_top)
  • top relative humidity(hum_top)
  • temperature of the top humidity sensor chamber(thum_top)
  • bottom vapor pressure(vp_bot)

sgp5ebbrE8.b1:
  • temperature of the top humidity sensor chamber(thum_top)
  • bottom air temperature(tair_bot)
  • bottom vapor pressure(vp_bot)
  • top vapor pressure(vp_top)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • bottom relative humidity(hum_bot)
  • top air temperature(tair_top)
  • top relative humidity(hum_top)

sgp15ebbrE8.b1:
  • Left air temperature(tair_l)
  • Right air temperature(tair_r)


Back To Table of Contents

DQRID : D060111.9
Start DateStart TimeEnd DateEnd Time
12/18/2005090012/20/20051600
12/21/2005050012/21/20051830
Subject:
SGP/EBBR/E13 - Wind Speed Sensor Frozen
DataStreams:sgp5ebbrE13.b1, sgp15ebbrE13.b1, sgp30ebbrE13.b1
Description:
The wind speed sensor was frozen to a stopped posiiton; wind speed data is incorrect.
Measurements:sgp15ebbrE13.b1:
  • scalar wind speed(wind_s)

sgp5ebbrE13.b1:
  • Resultant wind speed(res_ws)
  • scalar wind speed(wind_s)

sgp30ebbrE13.b1:
  • scalar wind speed(wind_s)
  • Resultant wind speed(res_ws)


Back To Table of Contents

DQRID : D060501.6
Start DateStart TimeEnd DateEnd Time
12/07/2005000001/24/20062330
Subject:
SGP/EBBR/E8 - Flux and Gradient Measurements Suspect
DataStreams:sgp5ebbrE8.b1, sgp15ebbrE8.b1, sgp30ebbrE8.b1
Description:
The flux and gradient measurements were often incorrect when the AEM did not function 
properly.  The user needs to inspect the data (particularly the home signals) to determine 
when the AEM was and was not working.
Measurements:sgp30ebbrE8.b1:
  • bottom air temperature(tair_bot)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • top vapor pressure(vp_top)
  • top relative humidity(hum_top)
  • bottom vapor pressure(vp_bot)
  • latent heat flux(e)
  • corrected sensible heat flux(h)
  • bottom relative humidity(hum_bot)
  • ratio of sensible/latent heat fluxes (Bowen ratio)(bowen)
  • top air temperature(tair_top)
  • temperature of the top humidity sensor chamber(thum_top)

sgp5ebbrE8.b1:
  • temperature of the top humidity sensor chamber(thum_top)
  • bottom air temperature(tair_bot)
  • bottom vapor pressure(vp_bot)
  • bottom relative humidity(hum_bot)
  • top air temperature(tair_top)
  • top relative humidity(hum_top)
  • top vapor pressure(vp_top)
  • temperature of the bottom humidity sensor chamber(thum_bot)

sgp15ebbrE8.b1:
  • Temperature of left humidity sensor chamber(rr_thum_l)
  • Right air temperature(tair_r)
  • Right relative humidity(mv_hum_r)
  • Left air temperature(tair_l)
  • Temperature of right humidity sensor chamber(rr_thum_r)
  • Left relative humidity(mv_hum_l)


Back To Table of Contents



END OF DATA