Data Quality Reports for Session: 104830 User: martin Completed: 03/16/2007


TABLE OF CONTENTS

DQR IDSubjectData Streams Affected
D060922.2SGP/MFRSR/E27 - Shading/alignment problemsgpmfrsrE27.00, sgpmfrsrE27.a0, sgpmfrsrE27.b1, sgpmfrsrlangleyE27.c1,
sgpmfrsrlangplotE27.c1, sgpmfrsrod1barnmichE27.c1
D061020.2NSA/AERI/C1 - Reprocessed: Failed temp sensor affected calibrationnsaaerich1C1.b1, nsaaerich2C1.b1, nsaaerisummaryC1.b1


DQRID : D060922.2
Start DateStart TimeEnd DateEnd Time
09/13/2006163011/08/20061700
Subject:
SGP/MFRSR/E27 - Shading/alignment problem
DataStreams:sgpmfrsrE27.00, sgpmfrsrE27.a0, sgpmfrsrE27.b1, sgpmfrsrlangleyE27.c1,
sgpmfrsrlangplotE27.c1, sgpmfrsrod1barnmichE27.c1
Description:
There is a shading problem between the hours of 1630 and 2330 UTC until maintenance was 
performed on 9/28.  Maintenance on 9/28 helped a lot, but a minor shading problem still 
exists.  After the 9/28 maintenance the problem is evident between 1830 and 2230 UTC.
Measurements:sgpmfrsrE27.00:
  • Raw data stream - documentation not supported(Raw data stream - documentation not supported)
  • Raw data stream - documentation not supported(raw)

sgpmfrsrE27.b1:
  • Hemispheric Broadband Irradiance, offset and cosine corrected, broadband scale
    factor applied(hemisp_broadband)
  • Narrowband Hemispheric Irradiance, Filter 2, offset and cosine corrected(hemisp_narrowband_filter2)
  • Diffuse Hemispheric Broadband Irradiance, offset subtracted, cosine corrected,
    broadband scale applied(diffuse_hemisp_broadband)
  • Narrowband Hemispheric Irradiance, Filter 1, offset and cosine corrected(hemisp_narrowband_filter1)
  • Narrowband Hemispheric Irradiance, Filter 4, offset and cosine corrected(hemisp_narrowband_filter4)
  • Narrowband Direct Normal Irradiance, Filter 1, cosine corrected(direct_normal_narrowband_filter1)
  • Narrowband Direct Normal Irradiance, Filter 4, cosine corrected(direct_normal_narrowband_filter4)
  • Narrowband Direct Normal Irradiance, Filter 3, cosine corrected(direct_normal_narrowband_filter3)
  • Narrowband Direct Normal Irradiance, Filter 2, cosine corrected(direct_normal_narrowband_filter2)
  • Direct Normal Broadband Irradiance, cosine corrected, broadband scale applied(direct_normal_broadband)
  • Narrowband Diffuse Hemispheric Irradiance, Filter 5, offset and cosine corrected(diffuse_hemisp_narrowband_filter5)
  • Narrowband Diffuse Hemispheric Irradiance, Filter 6, offset and cosine corrected(diffuse_hemisp_narrowband_filter6)
  • Narrowband Diffuse Hemispheric Irradiance, Filter 2, offset and cosine corrected(diffuse_hemisp_narrowband_filter2)
  • Narrowband Diffuse Hemispheric Irradiance, Filter 1, offset and cosine corrected(diffuse_hemisp_narrowband_filter1)
  • Narrowband Diffuse Hemispheric Irradiance, Filter 4, offset and cosine corrected(diffuse_hemisp_narrowband_filter4)
  • Narrowband Diffuse Hemispheric Irradiance, Filter 3, offset and cosine corrected(diffuse_hemisp_narrowband_filter3)
  • Narrowband Hemispheric Irradiance, Filter 5, offset and cosine corrected(hemisp_narrowband_filter5)
  • Narrowband Direct Normal Irradiance, Filter 6, cosine corrected(direct_normal_narrowband_filter6)
  • Narrowband Direct Normal Irradiance, Filter 5, cosine corrected(direct_normal_narrowband_filter5)
  • Narrowband Hemispheric Irradiance, Filter 3, offset and cosine corrected(hemisp_narrowband_filter3)
  • Narrowband Hemispheric Irradiance, Filter 6, offset and cosine corrected(hemisp_narrowband_filter6)

sgpmfrsrE27.a0:
  • Narrowband Diffuse Hemispheric Irradiance, Filter 3, offset and cosine corrected(diffuse_hemisp_narrowband_filter3)
  • Narrowband Diffuse Hemispheric Irradiance, Filter 6, offset and cosine corrected(diffuse_hemisp_narrowband_filter6)
  • Narrowband Diffuse Hemispheric Irradiance, Filter 5, offset and cosine corrected(diffuse_hemisp_narrowband_filter5)
  • Narrowband Diffuse Hemispheric Irradiance, Filter 4, offset and cosine corrected(diffuse_hemisp_narrowband_filter4)
  • Diffuse Hemispheric Broadband Irradiance, offset subtracted, cosine corrected,
    broadband scale applied(diffuse_hemisp_broadband)
  • Narrowband Direct Normal Irradiance, Filter 6, cosine corrected(direct_normal_narrowband_filter6)
  • Direct Normal Broadband Irradiance, cosine corrected, broadband scale applied(direct_normal_broadband)
  • Narrowband Direct Normal Irradiance, Filter 3, cosine corrected(direct_normal_narrowband_filter3)
  • Narrowband Direct Normal Irradiance, Filter 4, cosine corrected(direct_normal_narrowband_filter4)
  • Narrowband Direct Normal Irradiance, Filter 1, cosine corrected(direct_normal_narrowband_filter1)
  • Narrowband Diffuse Hemispheric Irradiance, Filter 2, offset and cosine corrected(diffuse_hemisp_narrowband_filter2)
  • Narrowband Diffuse Hemispheric Irradiance, Filter 1, offset and cosine corrected(diffuse_hemisp_narrowband_filter1)
  • Narrowband Direct Normal Irradiance, Filter 5, cosine corrected(direct_normal_narrowband_filter5)
  • Narrowband Direct Normal Irradiance, Filter 2, cosine corrected(direct_normal_narrowband_filter2)

sgpmfrsrlangplotE27.c1:
  • rejected points for the final fit for the Direct Narrowband Filter4(barnard_rejected_filter4)
  • rejected points for the final fit for the Direct Narrowband Filter5(barnard_rejected_filter5)
  • Airmasses(barnard_airmass)
  • rejected points for the final fit for the Direct Narrowband Filter6(barnard_rejected_filter6)
  • log(irradiance) for the Direct Narrowband Filter3(barnard_lnI_filter3)
  • north latitude for all the input platforms.(lat)
  • altitude above sea levelaltunits(alt)
  • rejected points for the final fit for the Direct Narrowband Filter1(michalsky_rejected_filter1)
  • Time offset from base_time(base_time)
  • rejected points for the final fit for the Direct Narrowband Filter3(michalsky_rejected_filter3)
  • log(irradiance) for the Direct Narrowband Filter1(michalsky_lnI_filter1)
  • rejected points for the final fit for the Direct Narrowband Filter5(michalsky_rejected_filter5)
  • rejected points for the final fit for the Direct Narrowband Filter2(michalsky_rejected_filter2)
  • rejected points for the final fit for the Direct Narrowband Filter6(michalsky_rejected_filter6)
  • rejected points for the final fit for the Direct Narrowband Filter4(michalsky_rejected_filter4)
  • log(irradiance) for the Direct Broadband(barnard_lnI_broadband)
  • log(irradiance) for the Direct Broadband(michalsky_lnI_broadband)
  • rejected points for the final fit for the Direct Broadband(michalsky_rejected_broadband)
  • log(irradiance) for the Direct Narrowband Filter6(michalsky_lnI_filter6)
  • east longitude for all the input platforms.(lon)
  • log(irradiance) for the Direct Narrowband Filter2(michalsky_lnI_filter2)
  • log(irradiance) for the Direct Narrowband Filter5(michalsky_lnI_filter5)
  • log(irradiance) for the Direct Narrowband Filter4(michalsky_lnI_filter4)
  • log(irradiance) for the Direct Narrowband Filter3(michalsky_lnI_filter3)
  • log(irradiance) for the Direct Narrowband Filter6(barnard_lnI_filter6)
  • rejected points for the final fit for the Direct Narrowband Filter3(barnard_rejected_filter3)
  • rejected points for the final fit for the Direct Narrowband Filter2(barnard_rejected_filter2)
  • rejected points for the final fit for the Direct Narrowband Filter1(barnard_rejected_filter1)
  • log(irradiance) for the Direct Narrowband Filter5(barnard_lnI_filter5)
  • Time offset of tweaks from base_time(time_offset)
  • rejected points for the final fit for the Direct Broadband(barnard_rejected_broadband)
  • log(irradiance) for the Direct Narrowband Filter4(barnard_lnI_filter4)
  • log(irradiance) for the Direct Narrowband Filter2(barnard_lnI_filter2)
  • Airmasses(michalsky_airmass)
  • log(irradiance) for the Direct Narrowband Filter1(barnard_lnI_filter1)

sgpmfrsrod1barnmichE27.c1:
  • aerosol optical depth filter 1(aerosol_optical_depth_filter1)
  • east longitude for all the input platforms.(lon)
  • Time offset of tweaks from base_time(time_offset)
  • Ozone absorption coefficient used for filter 2(Ozone_absorption_coefficient_filter2)
  • Ozone absorption coefficient used for filter 1(Ozone_absorption_coefficient_filter1)
  • north latitude for all the input platforms.(lat)
  • Rayleigh optical thickness computed for filter 1(Rayleigh_optical_thickness_filter1)
  • aerosol optical depth filter 3(aerosol_optical_depth_filter3)
  • aerosol optical depth filter 2(aerosol_optical_depth_filter2)
  • Rayleigh optical thickness computed for filter 3(Rayleigh_optical_thickness_filter3)
  • Rayleigh optical thickness computed for filter 4(Rayleigh_optical_thickness_filter4)
  • extraterrestrial spectral irradiance used for optical depth calculations,
    corrected for eccentricity of earth\'s orbit(io_filter1)
  • extraterrestrial spectral irradiance used for optical depth calculations,
    corrected for eccentricity of earth\'s orbit(io_filter2)
  • Ozone absorption coefficient used for filter 3(Ozone_absorption_coefficient_filter3)
  • Ozone absorption coefficient used for filter 4(Ozone_absorption_coefficient_filter4)
  • Ozone absorption coefficient used for filter 5(Ozone_absorption_coefficient_filter5)
  • aerosol optical depth filter 4(aerosol_optical_depth_filter4)
  • extraterrestrial spectral irradiance used for optical depth calculations,
    corrected for eccentricity of earth\'s orbit(io_filter4)
  • Rayleigh optical thickness computed for filter 2(Rayleigh_optical_thickness_filter2)
  • total optical depth direct narrowband filter 3(total_optical_depth_filter3)
  • Rayleigh optical thickness computed for filter 5(Rayleigh_optical_thickness_filter5)
  • totaloptical depth direct narrowband filter 2(total_optical_depth_filter2)
  • Optical depth from TOMS satellite(TOMS_optical_depth)
  • extraterrestrial spectral irradiance used for optical depth calculations,
    corrected for eccentricity of earth\'s orbit(io_filter3)
  • total optical depth direct narrowband filter 4(total_optical_depth_filter4)
  • aerosol optical depth filter 5(aerosol_optical_depth_filter5)
  • extraterrestrial spectral irradiance used for optical depth calculations,
    corrected for eccentricity of earth\'s orbit(io_filter5)
  • angstrom exponent(angstrom_exponent)
  • Airmasses(airmass)
  • Indicator of optical depth stability(optical_depth_stability_flag)
  • total optical depth direct narrowband filter 1(total_optical_depth_filter1)
  • total optical depth direct narrowband filter 5(total_optical_depth_filter5)
  • surface pressure(surface_pressure)
  • Time offset from base_time(base_time)
  • altitude above sea levelaltunits(alt)

sgpmfrsrlangleyE27.c1:
  • east longitude for all the input platforms.(lon)
  • number of points used in final linear fit for the Direct Narrowband Filter5(michalsky_number_points_filter5)
  • number of points used in final linear fit for the Direct Narrowband Filter6(michalsky_number_points_filter6)
  • rejection flag for Direct Narrowband Filter2(barnard_badflag_filter2)
  • Time offset from base_time(base_time)
  • rejection flag for Direct Broadband(barnard_badflag_broadband)
  • solar constant corrected for solar distance for the Direct Broadband(michalsky_solar_constant_sdist_broadband)
  • standard deviation around regression line for the Direct BroadBand(michalsky_standard_deviation_broadband)
  • percentage of initial points used in final linear fit for the Direct Broadband(barnard_good_fraction_broadband)
  • rejection flag for Direct Narrowband Filter4(barnard_badflag_filter4)
  • percentage of initial points used in final linear fit for the Direct Narrowband
    Filter3(michalsky_good_fraction_filter3)
  • percentage of initial points used in final linear fit for the Direct Narrowband
    Filter2(michalsky_good_fraction_filter2)
  • optical depth for the Direct Narrowband Filter1(barnard_optical_depth_filter1)
  • solar constant for the Direct Narrowband Filter1(michalsky_solar_constant_filter1)
  • solar constant corrected for solar distance for the Direct Narrowband Filter5(barnard_solar_constant_sdist_filter5)
  • percentage of initial points used in final linear fit for the Direct Narrowband
    Filter1(michalsky_good_fraction_filter1)
  • rejection flag for Direct Narrowband Filter3(barnard_badflag_filter3)
  • solar constant corrected for solar distance for the Direct Narrowband Filter6(barnard_solar_constant_sdist_filter6)
  • percentage of initial points used in final linear fit for the Direct Narrowband
    Filter5(barnard_good_fraction_filter5)
  • optical depth for the Direct Narrowband Filter2(barnard_optical_depth_filter2)
  • rejection flag for Direct Narrowband Filter1(michalsky_badflag_filter1)
  • optical depth for the Direct Narrowband Filter6(michalsky_optical_depth_filter6)
  • number of points used in final linear fit for the Direct Narrowband Filter1(barnard_number_points_filter1)
  • solar constant for the Direct BroadBand(michalsky_solar_constant_broadband)
  • number of points used in final linear fit for the Direct Broadband(barnard_number_points_broadband)
  • optical depth for the Direct Narrowband Filter1(michalsky_optical_depth_filter1)
  • solar constant corrected for solar distance for the Direct Narrowband Filter4(michalsky_solar_constant_sdist_filter4)
  • optical depth for the Direct Narrowband Filter3(barnard_optical_depth_filter3)
  • rejection flag for Direct Narrowband Filter2(michalsky_badflag_filter2)
  • standard deviation around regression line for the Direct Narrowband Filter5(michalsky_standard_deviation_filter5)
  • solar constant corrected for solar distance for the Direct Narrowband Filter5(michalsky_solar_constant_sdist_filter5)
  • percentage of initial points used in final linear fit for the Direct Narrowband
    Filter2(barnard_good_fraction_filter2)
  • error in final linear fit for the Direct Narrowband Filter6(barnard_error_fit_filter6)
  • rejection flag for Direct Narrowband Filter3(michalsky_badflag_filter3)
  • standard deviation around regression line for the Direct Narrowband Filter3(michalsky_standard_deviation_filter3)
  • error in final linear fit for the Direct BroadBand(barnard_error_fit_broadband)
  • solar constant for the Direct Narrowband Filter6(michalsky_solar_constant_filter6)
  • percentage of initial points used in final linear fit for the Direct Broadband(michalsky_good_fraction_broadband)
  • error in final linear fit for the Direct Narrowband Filter5(barnard_error_fit_filter5)
  • standard deviation around regression line for the Direct Narrowband Filter1(michalsky_standard_deviation_filter1)
  • percentage of initial points used in final linear fit for the Direct Narrowband
    Filter6(michalsky_good_fraction_filter6)
  • error in final linear fit for the Direct Narrowband Filter3(barnard_error_fit_filter3)
  • percentage of initial points used in final linear fit for the Direct Narrowband
    Filter3(barnard_good_fraction_filter3)
  • solar constant for the Direct Narrowband Filter5(michalsky_solar_constant_filter5)
  • rejection flag for Direct Narrowband Filter4(michalsky_badflag_filter4)
  • error in final linear fit for the Direct Narrowband Filter4(barnard_error_fit_filter4)
  • solar constant corrected for solar distance for the Direct Narrowband Filter3(michalsky_solar_constant_sdist_filter3)
  • rejection flag for Direct Narrowband Filter6(barnard_badflag_filter6)
  • solar constant corrected for solar distance for the Direct Narrowband Filter2(michalsky_solar_constant_sdist_filter2)
  • optical depth for the Direct Narrowband Filter5(barnard_optical_depth_filter5)
  • solar constant corrected for solar distance for the Direct Narrowband Filter3(barnard_solar_constant_sdist_filter3)
  • standard deviation around regression line for the Direct Narrowband Filter4(michalsky_standard_deviation_filter4)
  • optical depth for the Direct Narrowband Filter6(barnard_optical_depth_filter6)
  • standard deviation around regression line for the Direct Narrowband Filter6(michalsky_standard_deviation_filter6)
  • solar constant for the Direct Narrowband Filter3(michalsky_solar_constant_filter3)
  • percentage of initial points used in final linear fit for the Direct Narrowband
    Filter1(barnard_good_fraction_filter1)
  • error in final linear fit for the Direct Narrowband Filter2(barnard_error_fit_filter2)
  • solar constant corrected for solar distance for the Direct Narrowband Filter1(michalsky_solar_constant_sdist_filter1)
  • solar constant corrected for solar distance for the Direct Narrowband Filter4(barnard_solar_constant_sdist_filter4)
  • optical depth for the Direct Narrowband Filter4(barnard_optical_depth_filter4)
  • number of points used in final linear fit for the Direct Narrowband Filter5(barnard_number_points_filter5)
  • solar constant for the Direct Narrowband Filter4(michalsky_solar_constant_filter4)
  • solar constant corrected for solar distance for the Direct BroadBand(barnard_solar_constant_sdist_broadband)
  • percentage of initial points used in final linear fit for the Direct Narrowband
    Filter4(barnard_good_fraction_filter4)
  • solar constant for the Direct Narrowband Filter2(michalsky_solar_constant_filter2)
  • error in final linear fit for the Direct Narrowband Filter1(barnard_error_fit_filter1)
  • solar constant corrected for solar distance for the Direct Narrowband Filter2(barnard_solar_constant_sdist_filter2)
  • rejection flag for Direct Broadband(michalsky_badflag_broadband)
  • error in optical depth (slope) of final linear fit for the Direct Broadband(barnard_error_slope_broadband)
  • rejection flag for Direct Narrowband Filter5(barnard_badflag_filter5)
  • error in optical depth (slope) of final linear fit for the Direct Narrowband
    Filter6(barnard_error_slope_filter6)
  • Time offset of tweaks from base_time(time_offset)
  • number of points used in final linear fit for the Direct Narrowband Filter3(barnard_number_points_filter3)
  • error in optical depth (slope) of final linear fit for the Direct Narrowband
    Filter3(barnard_error_slope_filter3)
  • percentage of initial points used in final linear fit for the Direct Narrowband
    Filter5(michalsky_good_fraction_filter5)
  • percentage of initial points used in final linear fit for the Direct Narrowband
    Filter6(barnard_good_fraction_filter6)
  • error in optical depth (slope) of final linear fit for the Direct Narrowband
    Filter5(barnard_error_slope_filter5)
  • number of points used in final linear fit for the Direct Narrowband Filter4(barnard_number_points_filter4)
  • optical depth for the Direct Narrowband Filter3(michalsky_optical_depth_filter3)
  • percentage of initial points used in final linear fit for the Direct Narrowband
    Filter4(michalsky_good_fraction_filter4)
  • standard deviation around regression line for the Direct Narrowband Filter2(michalsky_standard_deviation_filter2)
  • optical depth for the Direct BroadBand(barnard_optical_depth_broadband)
  • optical depth for the Direct Narrowband Filter2(michalsky_optical_depth_filter2)
  • number of points used in final linear fit for the Direct Narrowband Filter2(barnard_number_points_filter2)
  • optical depth for the Direct Narrowband Filter5(michalsky_optical_depth_filter5)
  • error in optical depth (slope) of final linear fit for the Direct Narrowband
    Filter1(barnard_error_slope_filter1)
  • rejection flag for Direct Narrowband Filter6(michalsky_badflag_filter6)
  • solar constant corrected for solar distance for the Direct Narrowband Filter6(michalsky_solar_constant_sdist_filter6)
  • optical depth for the Direct BroadBand(michalsky_optical_depth_broadband)
  • number of points used in final linear fit for the Direct Narrowband Filter3(michalsky_number_points_filter3)
  • number of points used in final linear fit for the Direct Narrowband Filter6(barnard_number_points_filter6)
  • Angstrom exponent(michalsky_angstrom_exponent)
  • rejection flag for Direct Narrowband Filter5(michalsky_badflag_filter5)
  • rejection flag for Direct Narrowband Filter1(barnard_badflag_filter1)
  • error in optical depth (slope) of final linear fit for the Direct Narrowband
    Filter4(barnard_error_slope_filter4)
  • Angstrom exponent(barnard_angstrom_exponent)
  • number of points used in final linear fit for the Direct Narrowband Filter1(michalsky_number_points_filter1)
  • optical depth for the Direct Narrowband Filter4(michalsky_optical_depth_filter4)
  • solar constant corrected for solar distance for the Direct Narrowband Filter1(barnard_solar_constant_sdist_filter1)
  • error in optical depth (slope) of final linear fit for the Direct Narrowband
    Filter2(barnard_error_slope_filter2)
  • altitude above sea levelaltunits(alt)
  • number of points used in final linear fit for the Direct Broadband(michalsky_number_points_broadband)
  • number of points used in final linear fit for the Direct Narrowband Filter2(michalsky_number_points_filter2)
  • north latitude for all the input platforms.(lat)
  • number of points used in final linear fit for the Direct Narrowband Filter4(michalsky_number_points_filter4)


Back To Table of Contents

DQRID : D061020.2
Start DateStart TimeEnd DateEnd Time
10/18/2006000011/22/20062359
Subject:
NSA/AERI/C1 - Reprocessed: Failed temp sensor affected calibration
DataStreams:nsaaerich1C1.b1, nsaaerich2C1.b1, nsaaerisummaryC1.b1
Description:
On 18 Oct 2006, a thermistor that measures the temperature of the blackbody support 
structure failed, resulting in erroneously high values.  This measurement, which is captured by 
the field "BBsupportStructureTemp", provides the temperature of the radiance that is 
reflected into the blackbody (i.e., captured by the field "calibrationAmbientTemp"), and 
thus the calibrated radiance (the field "mean_rad") was incorrect and outside the ARM 
specification that the AERI data should be absolutely calibrated to within 1% of the ambient 
radiance.  The broken thermistor was fixed on 22 Nov 2006.

Fortunately, since the emissivity of the blackbodies is so high, absolute accuracy of the 
calibrationAmbientTemp is not required but should be within a few degrees.  The radiance 
data have been recalibrated using the ambient blackbody temperature (the field 
"calibrationCBBtemp") as a surrogate of the calibrationAmbientTemp. Historically, the 
calibrationAmbientTemp and calibrationCBBtemp measurements have been within 1-2 deg. As a result of 
this recalibration, the radiance data are now absolutely calibrated to better than 1%.
Measurements:nsaaerich2C1.b1:
  • Downwelling radiance interpolated to standard wavenumber scale(mean_rad)

nsaaerisummaryC1.b1:
  • Shortwave window radiance average (2510_2515 cm^-1)(shortwaveWindowRadiance2510_2515)
  • Longwave elevated air brightness temperature from radiance average (700_705
    cm^-1)(elevatedLayerAirTemp700_705)
  • Shortwave window brightness temperature from radiance average (2510_2515 cm^-1)(shortwaveWindowAirTemp2510_2515)
  • Shortwave surface air brightness temperature from radiance average (2295_2300
    cm^-1)(surfaceLayerAirTemp2295_2300)
  • Longwave radiance average (675-680 cm^-1) Surface Air(surfaceLayerRadiance675_680)
  • Shortwave elevated air brightness temperature from radiance average (2282_2287
    cm^-1)(elevatedLayerAirTemp2282_2287)
  • Shortwave radiance average (2282_2287 cm^-1) Elevated Air(elevatedLayerRadiance2282_2287)
  • Longwave surface air brightness temperature from radiance average (675_680
    cm^-1)(surfaceLayerAirTemp675_680)
  • Longwave radiance average (700_705 cm^-1) Elevated Air(elevatedLayerRadiance700_705)
  • Longwave window radiance average (985_990 cm^-1)(longwaveWindowRadiance985_990)
  • Shortwave radiance average (2295_2300 cm^-1) Surface Air(surfaceLayerRadiance2295_2300)
  • Longwave window brightness temperature from radiance average (985_990 cm^-1)(longwaveWindowAirTemp985_990)

nsaaerich1C1.b1:
  • Downwelling radiance interpolated to standard wavenumber scale(mean_rad)


Back To Table of Contents



END OF DATA