Data Quality Reports for Session: 106902 User: kmraisan Completed: 08/08/2007


TABLE OF CONTENTS

DQR IDSubjectData Streams Affected
D011219.3SGP EBBR E8 - E8 EBBR Soil Heat Flow #1 Incorrectsgp15ebbrE8.a1, sgp15ebbrE8.b1, sgp30ebbrE8.a1, sgp30ebbrE8.b1
D011220.2SGP EBBR E8 - E8 EBBR Battery Voltage Low, Data Incorrectsgp5ebbrE8.00, sgp5ebbrE8.a1, sgp15ebbrE8.a1, sgp15ebbrE8.b1, sgp30ebbrE8.a1,
sgp30ebbrE8.b1
D021113.1SGP/EBBR - Incorrect Units for Soil Heat Capacity (cs1, cs2, cs3, cs4, cs5) in 30EBBR
Header
sgp30ebbrE2.b1, sgp30ebbrE4.b1, sgp30ebbrE7.b1, sgp30ebbrE8.b1, sgp30ebbrE9.b1,
sgp30ebbrE12.b1, sgp30ebbrE13.b1, sgp30ebbrE15.b1, sgp30ebbrE18.b1, sgp30ebbrE19.b1,
sgp30ebbrE20.b1, sgp30ebbrE22.b1, sgp30ebbrE26.b1
D030113.12SGP/EBBR/E8 - Water in broken Net Rad Domesgp5ebbrE8.a1, sgp30ebbrE8.a1, sgp30ebbrE8.b1
D030729.1SGP/EBBR/E8 - Pressure Sensor Measurements IncorrectsgpebbrE8.01, sgp5ebbrE8.a1, sgp15ebbrE8.a1, sgp15ebbrE8.b1, sgp30ebbrE8.a1,
sgp30ebbrE8.b1
D030919.6SGP/EBBR/E8 - Water in Net Radiometer, Surface Fluxes Incorrectsgp5ebbrE8.a1, sgp15ebbrE8.a1, sgp15ebbrE8.b1, sgp30ebbrE8.a1, sgp30ebbrE8.b1
D040915.5SGP/EBBR/E8 - Net Radiation Incorrect, Fluxes Incorrectsgp5ebbrE8.b1, sgp15ebbrE8.b1, sgp30ebbrE8.b1
D050719.7SGP/EBBR/E8 - Improved EBBR CR10 Programsgp30ebbrE8.b1
D051106.4SGP/EBBR/E8 - Soil Heat Flow #2 Incorrectsgp15ebbrE8.b1, sgp30ebbrE8.b1
D051106.5SGP/EBBR/E8 - Net Radiation Incorrect; Sensible and Latent Heat Fluxes Incorrectsgp5ebbrE8.b1, sgp15ebbrE8.b1, sgp30ebbrE8.b1
D051112.5SGP/EBBR/E8 - metadata correctionssgp5ebbrE8.b1, sgp15ebbrE8.b1, sgp30ebbrE8.b1
D060818.8SGP/EBBR/E8 - Sensible and Latent Heat Fluxes and Net Radiation Incorrectsgp5ebbrE8.b1, sgp15ebbrE8.b1, sgp30ebbrE8.b1
D060818.9SGP/EBBR/E8 - Missing Datasgp5ebbrE8.b1, sgp15ebbrE8.b1, sgp30ebbrE8.b1


DQRID : D011219.3
Start DateStart TimeEnd DateEnd Time
04/01/2001000012/14/20012356
Subject:
SGP EBBR E8 - E8 EBBR Soil Heat Flow #1 Incorrect
DataStreams:sgp15ebbrE8.a1, sgp15ebbrE8.b1, sgp30ebbrE8.a1, sgp30ebbrE8.b1
Description:
Soil heat flow #1 was usually large negative or positive, 
and therefore incorrect.  Sensible and latent heat fluxes 
can be recalculated by using the four good sets of soil 
measurements for the energy balance.
Measurements:sgp15ebbrE8.a1:
  • Soil heat flow 1(mv_hft1)

sgp30ebbrE8.b1:
  • soil heat flow at the surface 1(g1)
  • average surface soil heat flow at the surface(ave_shf)
  • latent heat flux(e)
  • 5 cm soil heat flow corrected for soil moisture content, site 1(c_shf1)
  • corrected sensible heat flux(h)
  • 5 cm soil heat flow, site 1(shf1)

sgp30ebbrE8.a1:
  • average surface soil heat flow at the surface(ave_shf)
  • corrected sensible heat flux(h)
  • soil heat flow at the surface 1(g1)
  • 5 cm soil heat flow, site 1(shf1)
  • latent heat flux(e)
  • 5 cm soil heat flow corrected for soil moisture content, site 1(c_shf1)

sgp15ebbrE8.b1:
  • Soil heat flow 1(mv_hft1)


Back To Table of Contents

DQRID : D011220.2
Start DateStart TimeEnd DateEnd Time
04/01/2001000012/14/20012356
Subject:
SGP EBBR E8 - E8 EBBR Battery Voltage Low, Data Incorrect
DataStreams:sgp5ebbrE8.00, sgp5ebbrE8.a1, sgp15ebbrE8.a1, sgp15ebbrE8.b1, sgp30ebbrE8.a1,
sgp30ebbrE8.b1
Description:
The battery voltage was frequently less than 10.5 volts.
When the voltage is 10.4 V or less, all of the measurements
are suspect and should not be used (they are likely incorrect).
Measurements:sgp15ebbrE8.a1:
  • Wind direction (relative to true north)(mv_wind_d)
  • Soil moisture 4(r_sm4)
  • Soil heat flow 5(mv_hft5)
  • Left relative humidity(mv_hum_l)
  • Temperature of left humidity sensor chamber(rr_thum_l)
  • Soil moisture 5(r_sm5)
  • Soil moisture 1(r_sm1)
  • Right air temperature(tair_r)
  • Soil heat flow 2(mv_hft2)
  • Soil temperature 2(rr_ts2)
  • Soil temperature 1(rr_ts1)
  • Atmospheric pressure(mv_pres)
  • Soil temperature 5(rr_ts5)
  • Soil heat flow 3(mv_hft3)
  • Soil temperature 3(rr_ts3)
  • Soil heat flow 4(mv_hft4)
  • Soil moisture 4(rr_sm4)
  • Soil moisture 5(rr_sm5)
  • Soil heat flow 1(mv_hft1)
  • Soil temperature 4(rr_ts4)
  • Temperature of right humidity sensor chamber(rr_thum_r)
  • Soil moisture 3(r_sm3)
  • Right relative humidity(mv_hum_r)
  • scalar wind speed(wind_s)
  • Soil moisture 2(r_sm2)
  • Net radiation(mv_q)
  • Reference temperature(rr_tref)
  • Soil moisture 1(rr_sm1)
  • Soil moisture 3(rr_sm3)
  • Left air temperature(tair_l)
  • Soil moisture 2(rr_sm2)
  • Home signal(mv_home)

sgp30ebbrE8.b1:
  • Soil moisture 4 (mass water/mass dry soil)(sm4)
  • scalar wind speed(wind_s)
  • 0-5 cm integrated soil temperature, site 2(ts1)
  • Soil moisture 3 (mass water/mass dry soil)(sm3)
  • specific humidity(q)
  • bottom air temperature(tair_bot)
  • soil heat flow at the surface 4(g4)
  • 0-5 cm change in soil heat storage with time, site 2(ces1)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • soil heat flow at the surface 3(g3)
  • 5 cm soil heat flow, site 4(shf4)
  • 0-5 cm change in soil heat storage with time, site 2(ces2)
  • Soil moisture 1 (mass water/mass dry soil)(sm1)
  • 5 cm soil heat flow corrected for soil moisture content, site 5(c_shf5)
  • 0-5 cm integrated soil temperature, site 5(ts5)
  • bottom relative humidity(hum_bot)
  • ratio of sensible/latent heat fluxes (Bowen ratio)(bowen)
  • 5 cm soil heat flow corrected for soil moisture content, site 4(c_shf4)
  • 5 cm soil heat flow, site 5(shf5)
  • 5 cm soil heat flow corrected for soil moisture content, site 3(c_shf3)
  • 5 cm soil heat flow, site 3(shf3)
  • soil heat flow at the surface 2(g2)
  • Soil moisture 5 (mass water/mass dry soil)(sm5)
  • 0-5 cm integrated soil temperature, site 3(ts3)
  • bottom vapor pressure(vp_bot)
  • soil heat flow at the surface 5(g5)
  • latent heat flux(e)
  • 5 cm soil heat flow corrected for soil moisture content, site 2(c_shf2)
  • 0-5 cm integrated soil temperature, site 2(ts2)
  • top air temperature(tair_top)
  • temperature of the top humidity sensor chamber(thum_top)
  • Soil heat capacity 4(cs4)
  • 5 cm soil heat flow corrected for soil moisture content, site 1(c_shf1)
  • Soil heat capacity 5(cs5)
  • Exchange mechanism position indicator (15 to 30 min)(home_30)
  • Exchange mechanism position indicator (0 to 15 min)(home_15)
  • top relative humidity(hum_top)
  • corrected sensible heat flux(h)
  • Resultant wind speed(res_ws)
  • Reference Thermistor Temperature(tref)
  • Soil heat capacity 3(cs3)
  • average surface soil heat flow at the surface(ave_shf)
  • soil heat flow at the surface 1(g1)
  • Soil moisture 2 (mass water/mass dry soil)(sm2)
  • 5 cm soil heat flow, site 2(shf2)
  • 0-5 cm change in soil heat storage with time, site 4(ces4)
  • top vapor pressure(vp_top)
  • 5 cm soil heat flow, site 1(shf1)
  • 0-5 cm change in soil heat storage with time, site 3(ces3)
  • Soil heat capacity 2(cs2)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • 0-5 cm integrated soil temperature, site 4(ts4)
  • 0-5 cm change in soil heat storage with time, site 5(ces5)
  • Soil heat capacity 1(cs1)
  • wind direction (relative to true north)(wind_d)
  • pressure at constant pressure surface(pres)

sgp5ebbrE8.a1:
  • Home signal(home)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • top relative humidity(hum_top)
  • wind direction (relative to true north)(wind_d)
  • Resultant wind speed(res_ws)
  • temperature of the top humidity sensor chamber(thum_top)
  • pressure at constant pressure surface(pres)
  • Reference Thermistor Temperature(tref)
  • scalar wind speed(wind_s)
  • top vapor pressure(vp_top)
  • bottom vapor pressure(vp_bot)
  • bottom relative humidity(hum_bot)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • top air temperature(tair_top)
  • specific humidity(q)
  • bottom air temperature(tair_bot)

sgp5ebbrE8.00:
  • Raw data stream - documentation not supported(Raw data stream - documentation not supported)

sgp30ebbrE8.a1:
  • 5 cm soil heat flow corrected for soil moisture content, site 3(c_shf3)
  • Soil moisture 3 (mass water/mass dry soil)(sm3)
  • temperature of the top humidity sensor chamber(thum_top)
  • Exchange mechanism position indicator (0 to 15 min)(home_15)
  • Soil moisture 2 (mass water/mass dry soil)(sm2)
  • latent heat flux(e)
  • Soil moisture 4 (mass water/mass dry soil)(sm4)
  • 5 cm soil heat flow corrected for soil moisture content, site 4(c_shf4)
  • Soil heat capacity 5(cs5)
  • ratio of sensible/latent heat fluxes (Bowen ratio)(bowen)
  • bottom relative humidity(hum_bot)
  • 0-5 cm change in soil heat storage with time, site 4(ces4)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • wind direction (relative to true north)(wind_d)
  • soil heat flow at the surface 5(g5)
  • Soil heat capacity 4(cs4)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • 5 cm soil heat flow, site 2(shf2)
  • 0-5 cm change in soil heat storage with time, site 3(ces3)
  • Resultant wind speed(res_ws)
  • 5 cm soil heat flow, site 1(shf1)
  • Soil moisture 5 (mass water/mass dry soil)(sm5)
  • 0-5 cm change in soil heat storage with time, site 5(ces5)
  • 0-5 cm integrated soil temperature, site 3(ts3)
  • 5 cm soil heat flow corrected for soil moisture content, site 1(c_shf1)
  • average surface soil heat flow at the surface(ave_shf)
  • 5 cm soil heat flow, site 5(shf5)
  • Exchange mechanism position indicator (15 to 30 min)(home_30)
  • Soil heat capacity 1(cs1)
  • soil heat flow at the surface 2(g2)
  • 0-5 cm change in soil heat storage with time, site 2(ces1)
  • top vapor pressure(vp_top)
  • soil heat flow at the surface 3(g3)
  • 0-5 cm change in soil heat storage with time, site 2(ces2)
  • top relative humidity(hum_top)
  • soil heat flow at the surface 4(g4)
  • 5 cm soil heat flow, site 3(shf3)
  • bottom vapor pressure(vp_bot)
  • 5 cm soil heat flow corrected for soil moisture content, site 2(c_shf2)
  • Soil heat capacity 3(cs3)
  • Reference Thermistor Temperature(tref)
  • Soil heat capacity 2(cs2)
  • corrected sensible heat flux(h)
  • 0-5 cm integrated soil temperature, site 2(ts1)
  • scalar wind speed(wind_s)
  • 0-5 cm integrated soil temperature, site 4(ts4)
  • 5 cm soil heat flow corrected for soil moisture content, site 5(c_shf5)
  • 0-5 cm integrated soil temperature, site 5(ts5)
  • top air temperature(tair_top)
  • 5 cm soil heat flow, site 4(shf4)
  • bottom air temperature(tair_bot)
  • Soil moisture 1 (mass water/mass dry soil)(sm1)
  • pressure at constant pressure surface(pres)
  • specific humidity(q)
  • soil heat flow at the surface 1(g1)
  • 0-5 cm integrated soil temperature, site 2(ts2)

sgp15ebbrE8.b1:
  • Soil heat flow 2(mv_hft2)
  • Soil heat flow 3(mv_hft3)
  • Temperature of left humidity sensor chamber(rr_thum_l)
  • Soil heat flow 1(mv_hft1)
  • Temperature of right humidity sensor chamber(rr_thum_r)
  • Left relative humidity(mv_hum_l)
  • Atmospheric pressure(mv_pres)
  • scalar wind speed(wind_s)
  • Soil moisture 5(r_sm5)
  • Wind direction (relative to true north)(mv_wind_d)
  • Soil temperature 3(rr_ts3)
  • Soil heat flow 4(mv_hft4)
  • Net radiation(mv_q)
  • Left air temperature(tair_l)
  • Soil heat flow 5(mv_hft5)
  • Reference temperature(rr_tref)
  • Soil temperature 1(rr_ts1)
  • Soil moisture 1(r_sm1)
  • Soil temperature 5(rr_ts5)
  • Soil temperature 4(rr_ts4)
  • Soil temperature 2(rr_ts2)
  • Soil moisture 3(r_sm3)
  • Home signal(mv_home)
  • Right air temperature(tair_r)
  • Right relative humidity(mv_hum_r)
  • Soil moisture 2(r_sm2)
  • Soil moisture 4(r_sm4)


Back To Table of Contents

DQRID : D021113.1
Start DateStart TimeEnd DateEnd Time
04/01/2001000006/18/20032359
Subject:
SGP/EBBR - Incorrect Units for Soil Heat Capacity (cs1, cs2, cs3, cs4, cs5) in 30EBBR 
Header
DataStreams:sgp30ebbrE2.b1, sgp30ebbrE4.b1, sgp30ebbrE7.b1, sgp30ebbrE8.b1, sgp30ebbrE9.b1,
sgp30ebbrE12.b1, sgp30ebbrE13.b1, sgp30ebbrE15.b1, sgp30ebbrE18.b1, sgp30ebbrE19.b1,
sgp30ebbrE20.b1, sgp30ebbrE22.b1, sgp30ebbrE26.b1
Description:
The units for Soil Heat Capacity (cs1, cs2, cs3, cs4, cs5) in the 
EBBR 30 minute netcdf header have been incorrect from the beginning 
of processing the data into netcdf files.  The correct units are 
MJ/m^3/C.

This does not affect the data quality.
Measurements:sgp30ebbrE8.b1:
  • Soil heat capacity 4(cs4)
  • Soil heat capacity 5(cs5)
  • Soil heat capacity 3(cs3)
  • Soil heat capacity 2(cs2)
  • Soil heat capacity 1(cs1)

sgp30ebbrE4.b1:
  • Soil heat capacity 3(cs3)
  • Soil heat capacity 2(cs2)
  • Soil heat capacity 5(cs5)
  • Soil heat capacity 4(cs4)
  • Soil heat capacity 1(cs1)

sgp30ebbrE9.b1:
  • Soil heat capacity 3(cs3)
  • Soil heat capacity 2(cs2)
  • Soil heat capacity 5(cs5)
  • Soil heat capacity 4(cs4)
  • Soil heat capacity 1(cs1)

sgp30ebbrE18.b1:
  • Soil heat capacity 1(cs1)
  • Soil heat capacity 4(cs4)
  • Soil heat capacity 3(cs3)
  • Soil heat capacity 2(cs2)
  • Soil heat capacity 5(cs5)

sgp30ebbrE26.b1:
  • Soil heat capacity 1(cs1)
  • Soil heat capacity 4(cs4)
  • Soil heat capacity 5(cs5)
  • Soil heat capacity 2(cs2)
  • Soil heat capacity 3(cs3)

sgp30ebbrE13.b1:
  • Soil heat capacity 4(cs4)
  • Soil heat capacity 2(cs2)
  • Soil heat capacity 1(cs1)
  • Soil heat capacity 3(cs3)
  • Soil heat capacity 5(cs5)

sgp30ebbrE7.b1:
  • Soil heat capacity 1(cs1)
  • Soil heat capacity 4(cs4)
  • Soil heat capacity 5(cs5)
  • Soil heat capacity 2(cs2)
  • Soil heat capacity 3(cs3)

sgp30ebbrE12.b1:
  • Soil heat capacity 2(cs2)
  • Soil heat capacity 5(cs5)
  • Soil heat capacity 4(cs4)
  • Soil heat capacity 1(cs1)
  • Soil heat capacity 3(cs3)

sgp30ebbrE19.b1:
  • Soil heat capacity 1(cs1)
  • Soil heat capacity 5(cs5)
  • Soil heat capacity 2(cs2)
  • Soil heat capacity 3(cs3)
  • Soil heat capacity 4(cs4)

sgp30ebbrE2.b1:
  • Soil heat capacity 2(cs2)
  • Soil heat capacity 3(cs3)
  • Soil heat capacity 4(cs4)
  • Soil heat capacity 1(cs1)
  • Soil heat capacity 5(cs5)

sgp30ebbrE22.b1:
  • Soil heat capacity 5(cs5)
  • Soil heat capacity 3(cs3)
  • Soil heat capacity 4(cs4)
  • Soil heat capacity 1(cs1)
  • Soil heat capacity 2(cs2)

sgp30ebbrE20.b1:
  • Soil heat capacity 3(cs3)
  • Soil heat capacity 1(cs1)
  • Soil heat capacity 4(cs4)
  • Soil heat capacity 5(cs5)
  • Soil heat capacity 2(cs2)

sgp30ebbrE15.b1:
  • Soil heat capacity 5(cs5)
  • Soil heat capacity 3(cs3)
  • Soil heat capacity 4(cs4)
  • Soil heat capacity 2(cs2)
  • Soil heat capacity 1(cs1)


Back To Table of Contents

DQRID : D030113.12
Start DateStart TimeEnd DateEnd Time
08/12/2002000008/12/20021730
Subject:
SGP/EBBR/E8 - Water in broken Net Rad Dome
DataStreams:sgp5ebbrE8.a1, sgp30ebbrE8.a1, sgp30ebbrE8.b1
Description:
The net radiometer had water in the bottom, resulting in incorrect
measurements of net radation. Calculated Sensible (h) and Latent Heat (e) 
Flux are therefore incorrect also.
Measurements:sgp30ebbrE8.b1:
  • latent heat flux(e)
  • specific humidity(q)
  • corrected sensible heat flux(h)

sgp5ebbrE8.a1:
  • specific humidity(q)

sgp30ebbrE8.a1:
  • latent heat flux(e)
  • corrected sensible heat flux(h)
  • specific humidity(q)


Back To Table of Contents

DQRID : D030729.1
Start DateStart TimeEnd DateEnd Time
08/12/2003180009/02/20031800
Subject:
SGP/EBBR/E8 - Pressure Sensor Measurements Incorrect
DataStreams:sgpebbrE8.01, sgp5ebbrE8.a1, sgp15ebbrE8.a1, sgp15ebbrE8.b1, sgp30ebbrE8.a1,
sgp30ebbrE8.b1
Description:
The EBBR barometer did not agree with the SMOS at
all times.  However this problem only rarely affected the 
sensible and latent heat flux values. 

Replacement of the barometer on 29 july 2003, 12 aug 2003,
and 26 aug 2003 caused some obvious disruption in data flow.
Measurements:sgp30ebbrE8.b1:
  • pressure at constant pressure surface(pres)

sgp15ebbrE8.a1:
  • Atmospheric pressure(mv_pres)

sgpebbrE8.01:
  • Raw data stream - documentation not supported(Raw data stream - documentation not supported)

sgp5ebbrE8.a1:
  • pressure at constant pressure surface(pres)

sgp30ebbrE8.a1:
  • pressure at constant pressure surface(pres)

sgp15ebbrE8.b1:
  • Atmospheric pressure(mv_pres)


Back To Table of Contents

DQRID : D030919.6
Start DateStart TimeEnd DateEnd Time
08/27/2003023009/09/20031730
Subject:
SGP/EBBR/E8  - Water in Net Radiometer, Surface Fluxes Incorrect
DataStreams:sgp5ebbrE8.a1, sgp15ebbrE8.a1, sgp15ebbrE8.b1, sgp30ebbrE8.a1, sgp30ebbrE8.b1
Description:
The net radiometer top dome was punctured by migrating birds.  This alone does not cause 
incorrect net radiation measurements.  However, when it subsequently rains, water collects 
in the bottom dome, causing the net radiation measurements to be too large during the 
day and too small at night.
Measurements:sgp15ebbrE8.a1:
  • Net radiation(mv_q)

sgp30ebbrE8.b1:
  • latent heat flux(e)
  • specific humidity(q)
  • corrected sensible heat flux(h)

sgp5ebbrE8.a1:
  • specific humidity(q)

sgp30ebbrE8.a1:
  • latent heat flux(e)
  • corrected sensible heat flux(h)
  • specific humidity(q)

sgp15ebbrE8.b1:
  • Net radiation(mv_q)


Back To Table of Contents

DQRID : D040915.5
Start DateStart TimeEnd DateEnd Time
08/30/2004120009/07/20041730
Subject:
SGP/EBBR/E8 - Net Radiation Incorrect, Fluxes Incorrect
DataStreams:sgp5ebbrE8.b1, sgp15ebbrE8.b1, sgp30ebbrE8.b1
Description:
The net radiometer dome was broken and water entered the botom dome,
causing net radiation measurements, and thus sensible and latent heat 
flux measurements, to be incorrect.
Measurements:sgp30ebbrE8.b1:
  • latent heat flux(e)
  • specific humidity(q)
  • corrected sensible heat flux(h)

sgp5ebbrE8.b1:
  • specific humidity(q)

sgp15ebbrE8.b1:
  • Net radiation(mv_q)


Back To Table of Contents

DQRID : D050719.7
Start DateStart TimeEnd DateEnd Time
04/01/2001000003/22/20051730
Subject:
SGP/EBBR/E8 - Improved EBBR CR10 Program
DataStreams:sgp30ebbrE8.b1
Description:
Effective 20050322.1730, the EBBR.E8 CR10 program was revised to improve 
the quality of the primary measurements as follows:
   
1) An RMS procedure is used to determine max and min limits of acceptable
soil heat flow.  This is applied to the individual soil sets.  Measurements
outside the limits are rejected and the measurements within the limits are
used to calculate the average soil heat flow.
   
2) Max and min limits are used to determine incorrect values of net
radiation, sensible heat flux (h), latent heat flux (e), and automatic
exchange mechanism (AEM) signal.  If AEM signal is outside the limits, h 
and e are set to 999s.  If net radiation is outside the limits, h and e are 
set to 999s. If h or e are outside the limits, h and e are set to 999s.
   
Virtually no incorrect soil measurement will affect the primary 
measurements of h and e.
   
By setting h and e to 999s, it can be easily seen that the primary 
variables are incorrect; no other interpretation is possible.
   
Prior to 20050322, the improved CR10 program was NOT in effect.  DQRs have
been submitted for known instances of incorrect soil measurements which
affected the quality of the primary measurements of h and e.
   
Note: the DQR begin date is the begin date of the sgp30ebbrE8.b1 data
stream.  The earlier version of the CR10 program was also used on previous
EBBR datastream names (e.g. sgp30ebbrE8.a1).
Measurements:sgp30ebbrE8.b1:
  • average surface soil heat flow at the surface(ave_shf)
  • latent heat flux(e)
  • corrected sensible heat flux(h)


Back To Table of Contents

DQRID : D051106.4
Start DateStart TimeEnd DateEnd Time
06/28/2005193006/28/20051930
Subject:
SGP/EBBR/E8 - Soil Heat Flow #2 Incorrect
DataStreams:sgp15ebbrE8.b1, sgp30ebbrE8.b1
Description:
Soil Heat Flow #2 spiked upwards briefly at 1930 GMT.
Measurements:sgp30ebbrE8.b1:
  • soil heat flow at the surface 2(g2)
  • 5 cm soil heat flow corrected for soil moisture content, site 2(c_shf2)
  • 5 cm soil heat flow, site 2(shf2)

sgp15ebbrE8.b1:
  • Soil heat flow 2(mv_hft2)


Back To Table of Contents

DQRID : D051106.5
Start DateStart TimeEnd DateEnd Time
08/04/2005200008/09/20052030
Subject:
SGP/EBBR/E8 - Net Radiation Incorrect; Sensible and Latent Heat Fluxes Incorrect
DataStreams:sgp5ebbrE8.b1, sgp15ebbrE8.b1, sgp30ebbrE8.b1
Description:
The top dome of the net radiometer was cracked and water had gotten inside it, so net 
radiation, and sensible and latent heat fluxes were incorrect.
Measurements:sgp30ebbrE8.b1:
  • latent heat flux(e)
  • specific humidity(q)
  • corrected sensible heat flux(h)

sgp5ebbrE8.b1:
  • specific humidity(q)

sgp15ebbrE8.b1:
  • Net radiation(mv_q)


Back To Table of Contents

DQRID : D051112.5
Start DateStart TimeEnd DateEnd Time
10/13/2003000007/22/20052359
Subject:
SGP/EBBR/E8 - metadata corrections
DataStreams:sgp5ebbrE8.b1, sgp15ebbrE8.b1, sgp30ebbrE8.b1
Description:
On 20050723, a series of metadata corrections and additions were completed.  These 
metadata changes apply to all EBBR.E8 data collected by ARM back to the installation of the 
instrument in December 1992. Please see the current metadata for correct information.  These 
changes do not affect data values or quality.	

The changes are summarized below:
1) Update of "sensor location" information
2) Addition of installation dates for the systems
3) Correction of soil moisture units (from "by volume" to "gravimetric")
Measurements:sgp30ebbrE8.b1:
  • Time offset from base_time(base_time)

sgp5ebbrE8.b1:
  • Time offset from base_time(base_time)

sgp15ebbrE8.b1:
  • Time offset from base_time(base_time)


Back To Table of Contents

DQRID : D060818.8
Start DateStart TimeEnd DateEnd Time
06/23/2006013006/27/20061730
Subject:
SGP/EBBR/E8 - Sensible and Latent Heat Fluxes and Net Radiation Incorrect
DataStreams:sgp5ebbrE8.b1, sgp15ebbrE8.b1, sgp30ebbrE8.b1
Description:
The net radiometer top dome was broken and water had gotten into it.

Sensible and latent heat fluxes and net radiation were therefore incorrect.
Measurements:sgp30ebbrE8.b1:
  • latent heat flux(e)
  • specific humidity(q)
  • corrected sensible heat flux(h)

sgp5ebbrE8.b1:
  • specific humidity(q)

sgp15ebbrE8.b1:
  • Net radiation(mv_q)


Back To Table of Contents

DQRID : D060818.9
Start DateStart TimeEnd DateEnd Time
08/05/2006153008/07/20060530
Subject:
SGP/EBBR/E8 - Missing Data
DataStreams:sgp5ebbrE8.b1, sgp15ebbrE8.b1, sgp30ebbrE8.b1
Description:
The data was missing during this period.
Measurements:sgp30ebbrE8.b1:
  • Soil moisture 4 (mass water/mass dry soil)(sm4)
  • 0-5 cm integrated soil temperature, site 2(ts1)
  • Soil moisture 3 (mass water/mass dry soil)(sm3)
  • scalar wind speed(wind_s)
  • specific humidity(q)
  • bottom air temperature(tair_bot)
  • soil heat flow at the surface 4(g4)
  • 0-5 cm change in soil heat storage with time, site 2(ces1)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • soil heat flow at the surface 3(g3)
  • 5 cm soil heat flow, site 4(shf4)
  • 0-5 cm change in soil heat storage with time, site 2(ces2)
  • Soil moisture 1 (mass water/mass dry soil)(sm1)
  • 5 cm soil heat flow corrected for soil moisture content, site 5(c_shf5)
  • 0-5 cm integrated soil temperature, site 5(ts5)
  • east longitude for all the input platforms.(lon)
  • bottom relative humidity(hum_bot)
  • ratio of sensible/latent heat fluxes (Bowen ratio)(bowen)
  • 5 cm soil heat flow corrected for soil moisture content, site 4(c_shf4)
  • 5 cm soil heat flow, site 5(shf5)
  • north latitude for all the input platforms.(lat)
  • 5 cm soil heat flow, site 3(shf3)
  • 5 cm soil heat flow corrected for soil moisture content, site 3(c_shf3)
  • soil heat flow at the surface 2(g2)
  • Soil moisture 5 (mass water/mass dry soil)(sm5)
  • 0-5 cm integrated soil temperature, site 3(ts3)
  • bottom vapor pressure(vp_bot)
  • soil heat flow at the surface 5(g5)
  • Time offset from base_time(base_time)
  • latent heat flux(e)
  • 5 cm soil heat flow corrected for soil moisture content, site 2(c_shf2)
  • 0-5 cm integrated soil temperature, site 2(ts2)
  • top air temperature(tair_top)
  • temperature of the top humidity sensor chamber(thum_top)
  • Soil heat capacity 4(cs4)
  • 5 cm soil heat flow corrected for soil moisture content, site 1(c_shf1)
  • Soil heat capacity 5(cs5)
  • Exchange mechanism position indicator (15 to 30 min)(home_30)
  • Exchange mechanism position indicator (0 to 15 min)(home_15)
  • top relative humidity(hum_top)
  • corrected sensible heat flux(h)
  • Resultant wind speed(res_ws)
  • Reference Thermistor Temperature(tref)
  • Soil heat capacity 3(cs3)
  • soil heat flow at the surface 1(g1)
  • average surface soil heat flow at the surface(ave_shf)
  • Soil moisture 2 (mass water/mass dry soil)(sm2)
  • 5 cm soil heat flow, site 2(shf2)
  • 0-5 cm change in soil heat storage with time, site 4(ces4)
  • top vapor pressure(vp_top)
  • 5 cm soil heat flow, site 1(shf1)
  • altitude above sea levelaltunits(alt)
  • 0-5 cm change in soil heat storage with time, site 3(ces3)
  • Soil heat capacity 2(cs2)
  • Time offset of tweaks from base_time(time_offset)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • 0-5 cm change in soil heat storage with time, site 5(ces5)
  • 0-5 cm integrated soil temperature, site 4(ts4)
  • Soil heat capacity 1(cs1)
  • wind direction (relative to true north)(wind_d)
  • pressure at constant pressure surface(pres)

sgp5ebbrE8.b1:
  • temperature of the top humidity sensor chamber(thum_top)
  • bottom vapor pressure(vp_bot)
  • wind direction (relative to true north)(wind_d)
  • standard deviation of wind direction (sigma theta)(sigma_wd)
  • Time offset of tweaks from base_time(time_offset)
  • Time offset from base_time(base_time)
  • temperature of the bottom humidity sensor chamber(thum_bot)
  • Time offset from midnight of date of file. For CO data, this is identical to
    time_offset and is included for compatibility.(time)
  • bottom relative humidity(hum_bot)
  • specific humidity(q)
  • north latitude for all the input platforms.(lat)
  • top relative humidity(hum_top)
  • top vapor pressure(vp_top)
  • Resultant wind speed(res_ws)
  • scalar wind speed(wind_s)
  • Home signal(home)
  • Reference Thermistor Temperature(tref)
  • bottom air temperature(tair_bot)
  • pressure at constant pressure surface(pres)
  • top air temperature(tair_top)
  • east longitude for all the input platforms.(lon)
  • altitude above sea levelaltunits(alt)

sgp15ebbrE8.b1:
  • Soil heat flow 2(mv_hft2)
  • Soil heat flow 3(mv_hft3)
  • Temperature of left humidity sensor chamber(rr_thum_l)
  • Time offset from base_time(base_time)
  • altitude above sea levelaltunits(alt)
  • Soil heat flow 1(mv_hft1)
  • Temperature of right humidity sensor chamber(rr_thum_r)
  • Left relative humidity(mv_hum_l)
  • Atmospheric pressure(mv_pres)
  • Time offset of tweaks from base_time(time_offset)
  • Battery(bat)
  • scalar wind speed(wind_s)
  • Soil moisture 5(r_sm5)
  • Wind direction (relative to true north)(mv_wind_d)
  • Soil temperature 3(rr_ts3)
  • Soil heat flow 4(mv_hft4)
  • Net radiation(mv_q)
  • Left air temperature(tair_l)
  • Soil heat flow 5(mv_hft5)
  • Reference temperature(rr_tref)
  • Soil temperature 1(rr_ts1)
  • Soil moisture 1(r_sm1)
  • north latitude for all the input platforms.(lat)
  • Soil temperature 5(rr_ts5)
  • Soil temperature 4(rr_ts4)
  • Signature(signature)
  • Soil temperature 2(rr_ts2)
  • Soil moisture 3(r_sm3)
  • Home signal(mv_home)
  • Right air temperature(tair_r)
  • Right relative humidity(mv_hum_r)
  • east longitude for all the input platforms.(lon)
  • Soil moisture 2(r_sm2)
  • Soil moisture 4(r_sm4)


Back To Table of Contents



END OF DATA