Data Quality Reports for Session: 108796 User: gaustad Completed: 11/07/2007


TABLE OF CONTENTS

DQR IDSubjectData Streams Affected
D010504.2NSA/MWR/C2 - Missing datansamwrlosC2.b1, nsamwrtipC2.a1
D030515.3NSA/MWR/C1 - no air temperature signalnsamwrC1.00, nsamwrlosC1.b1, nsamwrtipC1.a1
D030724.1NSA/MWR/C2 - Thermally unstablensamwrlosC2.b1
D030822.7NSA/MWR/C1 - min/max/delta values incorrectnsamwrlosC1.b1
D040102.4NSA/MWR/C2 - Heater problemnsamwrlosC2.b1, nsamwrtipC2.a1
D050202.1NSA/MWR/C2 - no air temperature signalnsamwrlosC2.b1, nsamwrtipC2.a1
D050725.7NSA/MWR/C1 - Reprocess: Revised Calibration Coefficientsnsa5mwravgC1.c1, nsamwrlosC1.a1, nsamwrlosC1.b1, nsamwrtipC1.a1, nsaqmemwrcolC1.c1
D050725.8NSA/MWR/C2 - Reprocessed: Revised Retrieval CoefficientsnsamwrlosC2.b1, nsamwrtipC2.a1
D050928.3NSA/MWR/C1 - New software version (4.15) installednsamwrlosC1.b1, nsamwrtipC1.a1
D050928.4NSA/MWR/C2 - New software version (4.15) installednsamwrlosC2.b1, nsamwrtipC2.a1


DQRID : D010504.2
Start DateStart TimeEnd DateEnd Time
10/26/1999000311/02/19990008
11/09/1999000412/27/19990008
12/28/1999000401/08/20000008
01/11/2000000401/20/20000428
03/11/2000021803/22/20000449
04/16/2000153604/18/20000540
06/09/2000060506/12/20000408
09/28/2000003609/30/20000132
02/03/2001020802/05/20010014
06/23/2001000006/25/20011820
07/01/2001200007/04/20011745
07/15/2001180007/17/20011650
11/17/2001030011/28/20012332
01/21/2002222101/23/20020417
04/02/2002000004/03/20020151
04/15/2002232404/17/20020108
07/21/2002180007/23/20020448
12/18/2002221801/28/20032115
02/17/2003184202/25/20032044
09/22/2005193210/01/20051700
Subject:
NSA/MWR/C2 - Missing data
DataStreams:nsamwrlosC2.b1, nsamwrtipC2.a1
Description:
Data are missing and unrecoverable.
Measurements:nsamwrlosC2.b1:
  • Water on Teflon window (1=WET, 0=DRY)(wet_window)
  • base time(base_time)
  • lat(lat)
  • Mixer kinetic (physical) temperature(tkxc)
  • lon(lon)
  • Mean 31.4 GHz sky brightness temperature(tbsky31)
  • Noise injection temp at 31.4 GHz adjusted to tkbb(tnd31)
  • Averaged total liquid water along LOS path(liq)
  • Noise injection temp at nominal temperature at 23.8 GHz(tnd_nom23)
  • Ambient temperature(tkair)
  • Noise injection temp at 23.8 GHz adjusted to tkbb(tnd23)
  • 31.4 GHz sky signal(sky31)
  • Dummy altitude for Zeb(alt)
  • Sky Infra-Red Temperature(sky_ir_temp)
  • Noise injection temp at nominal temperature at 31.4 GHz(tnd_nom31)
  • 23.8 GHz sky signal(sky23)
  • 23.8 GHz Blackbody signal(bb23)
  • Mean 23.8 GHz sky brightness temperature(tbsky23)
  • 23.8 GHz blackbody+noise injection signal(bbn23)
  • 31.4 GHz blac2body+noise injection signal(bbn31)
  • Time offset of tweaks from base_time(time_offset)
  • Blackbody kinetic temperature(tkbb)
  • MWR column precipitable water vapor(vap)
  • IR Brightness Temperature(ir_temp)
  • Temperature correction coefficient at 31.4 GHz(tc31)
  • Temperature correction coefficient at 23.8 GHz(tc23)
  • (tknd)
  • 31.4 GHz blackbody(bb31)

nsamwrtipC2.a1:
  • 23.8 GHz blackbody+noise injection signal(bbn23)
  • Actual elevation angle(actel)
  • Noise injection temp at 23.8 GHz derived from this tip(tnd23I)
  • lon(lon)
  • 31.8 GHz sky brightness temperature derived from tip curve(tbskytip31)
  • Ambient temperature(tkair)
  • Actual Azimuth(actaz)
  • Total water vapor along zenith path using tip-derived brightness temperatures(vaptip)
  • 31.4 GHz blackbody(bb31)
  • (tknd)
  • 23.8 GHz goodness-of-fit coefficient(r23)
  • Dummy altitude for Zeb(alt)
  • Noise injection temp at 23.8 GHz adjusted to tkbb(tnd23)
  • Total liquid water along zenith path using tip-derived brightness temperatures(liqtip)
  • 23.8 GHz Blackbody signal(bb23)
  • lat(lat)
  • Temperature correction coefficient at 31.4 GHz(tc31)
  • 31.4 GHz sky signal(tipsky31)
  • Noise injection temp at nominal temperature at 31.4 GHz(tnd_nom31)
  • Noise injection temp at 31.4 GHz adjusted to tkbb(tnd31)
  • Noise injection temp at 31.4 GHz derived from this tip(tnd31I)
  • 31.4 GHz goodness-of-fit coefficient(r31)
  • 23.8 GHz sky brightness temperature derived from tip curve(tbskytip23)
  • Mixer kinetic (physical) temperature(tkxc)
  • 23.8 GHz sky signal(tipsky23)
  • 31.4 GHz blac2body+noise injection signal(bbn31)
  • Water on Teflon window (1=WET, 0=DRY)(wet_window)
  • Blackbody kinetic temperature(tkbb)
  • Temperature correction coefficient at 23.8 GHz(tc23)
  • base time(base_time)
  • Noise injection temp at nominal temperature at 23.8 GHz(tnd_nom23)
  • Time offset of tweaks from base_time(time_offset)


Back To Table of Contents

DQRID : D030515.3
Start DateStart TimeEnd DateEnd Time
05/13/2003190601/15/20050054
Subject:
NSA/MWR/C1  - no air temperature signal
DataStreams:nsamwrC1.00, nsamwrlosC1.b1, nsamwrtipC1.a1
Description:
When the new blower was upgraded by Radiometrics and reinstalled on the MWR, the air 
temperature sensor failed to properly report. It was determined that the wires carrying the 
signal to the analog board did not conform to the standard expected by the upgraded blower. 
The problem was corrected by changing the wiring and modifying the MWR software to read 
the signal from the appropriate corresponding channel.
Measurements:nsamwrC1.00:
  • Raw data stream - documentation not supported(Raw data stream - documentation not supported)

nsamwrlosC1.b1:
  • Ambient temperature(tkair)

nsamwrtipC1.a1:
  • Ambient temperature(tkair)


Back To Table of Contents

DQRID : D030724.1
Start DateStart TimeEnd DateEnd Time
06/19/2003232407/21/20030824
Subject:
NSA/MWR/C2 - Thermally unstable
DataStreams:nsamwrlosC2.b1
Description:
The MWR became thermally unstable during periods when the ambient temperature exceeded 
about 28C. This situation was corrected when the mixer temperature was manually increased to 
about 35C.

Data are suspect when the blackbody temperature, tkbb, exceeds 296 K.
Measurements:nsamwrlosC2.b1:
  • Mean 31.4 GHz sky brightness temperature(tbsky31)
  • Mean 23.8 GHz sky brightness temperature(tbsky23)
  • Averaged total liquid water along LOS path(liq)
  • MWR column precipitable water vapor(vap)


Back To Table of Contents

DQRID : D030822.7
Start DateStart TimeEnd DateEnd Time
01/02/1998000002/08/20032359
Subject:
NSA/MWR/C1 - min/max/delta values incorrect
DataStreams:nsamwrlosC1.b1
Description:
The values of valid_min, valid_max, and valid_delta for fields tkxc and tknd were 
incorrect. They should be 303, 333, and 0.5 K, respectively.
Measurements:nsamwrlosC1.b1:
  • Mixer kinetic (physical) temperature(tkxc)
  • (tknd)


Back To Table of Contents

DQRID : D040102.4
Start DateStart TimeEnd DateEnd Time
11/23/2003000001/09/20042030
Subject:
NSA/MWR/C2 - Heater problem
DataStreams:nsamwrlosC2.b1, nsamwrtipC2.a1
Description:
The MWR heater did not appear to operate when moisture was present. The heater sensitivity 
was adjusted.
Measurements:nsamwrlosC2.b1:
  • Water on Teflon window (1=WET, 0=DRY)(wet_window)

nsamwrtipC2.a1:
  • Water on Teflon window (1=WET, 0=DRY)(wet_window)


Back To Table of Contents

DQRID : D050202.1
Start DateStart TimeEnd DateEnd Time
02/25/2003204411/18/20042304
Subject:
NSA/MWR/C2 - no air temperature signal
DataStreams:nsamwrlosC2.b1, nsamwrtipC2.a1
Description:
When the new blower was upgraded by Radiometrics and reinstalled on the MWR, the air 
temperature sensor failed to properly report. It was determined that the wires carrying the 
signal to the analog board did not conform to the standard expected by the upgraded blower. 
The problem was corrected by modifying the MWR software to read the signal from the 
appropriate corresponding channel.
Measurements:nsamwrlosC2.b1:
  • Ambient temperature(tkair)

nsamwrtipC2.a1:
  • Ambient temperature(tkair)


Back To Table of Contents

DQRID : D050725.7
Start DateStart TimeEnd DateEnd Time
04/25/2002190006/29/20050000
Subject:
NSA/MWR/C1 - Reprocess: Revised Calibration Coefficients
DataStreams:nsa5mwravgC1.c1, nsamwrlosC1.a1, nsamwrlosC1.b1, nsamwrtipC1.a1, nsaqmemwrcolC1.c1
Description:
IN THE BEGINNING (June 1992), the retrieval coefficients used to derive 
the precipitable water vapor (PWV) and liquid water path (LWP) from the 
MWR brightness temperatures were based on the Liebe and Layton (1987) 
water vapor and oxygen absorption model and the Grant (1957) liquid 
water absorption model.

Following the SHEBA experience, revised retrievals based on the more 
recent Rosenkranz (1998) water vapor and oxygen absorption models and 
the Liebe (1991) liquid waer absorption model were developed.  The 
Rosenkranz water vapor absorption model resulted a 2 percent increase 
in PWV relative to the earlier Liebe and Layton model.  The Liebe 
liquid water absorption model decreased the LWP by 10% relative to the 
Grant model.  However, the increased oxygen absorption caused a 
0.02-0.03 mm (20-30 g/m2) reduction in LWP, which was particularly 
significant for low LWP conditions (i.e. thin clouds encountered at 
SHEBA).

Recently, it has been shown (Liljegren, Boukabara, Cady-Pereira, and 
Clough, TGARS v. 43, pp 1102-1108, 2005) that the half-width of the 
22 GHz water vapor line from the HITRAN compilation, which is 5 percent 
smaller than the Liebe and Dillon (1969) half-width used in Rosenkranz 
(1998), provided a better fit to the microwave brightness temperature 
measurements at 5 frequencies in the range 22-30 GHz, and yielded more 
accurate retrievals. Accordingly, revised MWR retrieval coefficients 
have been developed using MONORTM, which utilizes the HITRAN compilation 
for its spectroscopic parameters.  These new retrievals provide 3 
percent less PWV and 2.6 percent greater LWP than the previous 
retrievals based on Rosenkranz (1998).

Although the MWR data will be reprocessed to apply the new monortm-based 
retrievals, for most purposes it will be sufficient to correct the data 
using the following factors:

PWV_MONORTM = 0.9695 * PWV_ROSENKRANZ
LWP_MONORTM = 1.026  * LWP_ROSENKRANZ

The Rosenkranz-based retrieval coefficients became active at NSA.C1 
20020425.1900.  The MONORTM-based retrieval coefficients became active 
at NSA.C1 20050629.0000.

Note: a reprocessing effort is already underway to apply the 
Rosenkranz-based retrieval coefficients to all MWR prior to April 
2002.  An additional reprocessing task will be undertaken to apply 
the MONORTM retrieval to all MWR data when the first is completed. 
Read reprocessing comments in the netcdf file header carefully to 
ensure you are aware which retrieval is in play.
Measurements:nsamwrlosC1.a1:
  • MWR column precipitable water vapor(vap)
  • Averaged total liquid water along LOS path(liq)

nsa5mwravgC1.c1:
  • MWR column precipitable water vapor(vap)
  • Averaged total liquid water along LOS path(liq)

nsaqmemwrcolC1.c1:
  • Ensemble average for MWR vapor in window centered about balloon release(mean_vap_mwr)
  • Ensemble average for MWR liquid in window centered about balloon release(mean_liq_mwr)

nsamwrlosC1.b1:
  • MWR column precipitable water vapor(vap)
  • Averaged total liquid water along LOS path(liq)

nsamwrtipC1.a1:
  • Total water vapor along zenith path using tip-derived brightness temperatures(vaptip)
  • Total liquid water along zenith path using tip-derived brightness temperatures(liqtip)


Back To Table of Contents

DQRID : D050725.8
Start DateStart TimeEnd DateEnd Time
10/18/1999000006/29/20050000
Subject:
NSA/MWR/C2 - Reprocessed: Revised Retrieval Coefficients
DataStreams:nsamwrlosC2.b1, nsamwrtipC2.a1
Description:
IN THE BEGINNING (June 1992), the retrieval coefficients used to derive 
the precipitable water vapor (PWV) and liquid water path (LWP) from the 
MWR brightness temperatures were based on the Liebe and Layton (1987) 
water vapor and oxygen absorption model and the Grant (1957) liquid 
water absorption model.

Following the SHEBA experience, revised retrievals based on the more 
recent Rosenkranz (1998) water vapor and oxygen absorption models and 
the Liebe (1991) liquid water absorption model were developed.  The 
Rosenkranz water vapor absorption model resulted a 2 percent increase 
in PWV relative to the earlier Liebe and Layton model.	The Liebe 
liquid water absorption model decreased the LWP by 10% relative to the 
Grant model.  However, the increased oxygen absorption caused a 
0.02-0.03 mm (20-30 g/m2) reduction in LWP, which was particularly 
significant for low LWP conditions (i.e. thin clouds encountered at 
SHEBA).

Recently, it has been shown (Liljegren, Boukabara, Cady-Pereira, and 
Clough, TGARS v. 43, pp 1102-1108, 2005) that the half-width of the 
22 GHz water vapor line from the HITRAN compilation, which is 5 percent 
smaller than the Liebe and Dillon (1969) half-width used in Rosenkranz 
(1998), provided a better fit to the microwave brightness temperature 
measurements at 5 frequencies in the range 22-30 GHz, and yielded more 
accurate retrievals. Accordingly, revised MWR retrieval coefficients 
have been developed using MONORTM, which utilizes the HITRAN compilation 
for its spectroscopic parameters.  These new retrievals provide 3 
percent less PWV and 2.6 percent greater LWP than the previous 
retrievals based on Rosenkranz (1998).

The Rosenkranz-based retrieval coefficients became active at NSA.C2
20020418.1700.	The MONORTM-based retrieval coefficients became active 
at NSA.C2 20050629.0000.

Note: The NSA.C2 MWRLOS data for 19991018-20050630 have been reprocessed
to apply the MONORTM-based retrievals for all time. The reprocessed data
were archived in March 2007.  The TIP data have not been reprocessed.
Measurements:nsamwrlosC2.b1:
  • Averaged total liquid water along LOS path(liq)
  • MWR column precipitable water vapor(vap)

nsamwrtipC2.a1:
  • Total liquid water along zenith path using tip-derived brightness temperatures(liqtip)
  • Total water vapor along zenith path using tip-derived brightness temperatures(vaptip)


Back To Table of Contents

DQRID : D050928.3
Start DateStart TimeEnd DateEnd Time
09/16/2002182009/15/20051702
Subject:
NSA/MWR/C1 - New software version (4.15) installed
DataStreams:nsamwrlosC1.b1, nsamwrtipC1.a1
Description:
A problem began with the installation of MWR.EXE version 4.12 in September 2002. The 
software had been upgraded from a "DOS" to a "Windows"-compiled program to address an earlier 
problem.  The software upgrade corrected the earlier problem but introduced a new one 
that caused line-of-sight observing cycles to be skipped, a 15% reduction in the number of 
tip curves, and saturation of CPU usage.  Software versions 4.13 and 4.14 also produced 
these problems.

The new MWR software version (4.15) was installed on 9/15/2005. As a consequence of this 
upgrade, the tip curve frequency increased. The tip cycle time decreased from ~60s to ~50s.
Measurements:nsamwrlosC1.b1:
  • Blackbody kinetic temperature(tkbb)
  • 31.4 GHz blackbody(bb31)
  • MWR column precipitable water vapor(vap)
  • Noise injection temp at 31.4 GHz adjusted to tkbb(tnd31)
  • 23.8 GHz Blackbody signal(bb23)
  • 31.4 GHz blac2body+noise injection signal(bbn31)
  • Noise injection temp at 23.8 GHz adjusted to tkbb(tnd23)
  • 31.4 GHz sky signal(sky31)
  • Sky Infra-Red Temperature(sky_ir_temp)
  • 23.8 GHz blackbody+noise injection signal(bbn23)
  • Averaged total liquid water along LOS path(liq)
  • Mean 31.4 GHz sky brightness temperature(tbsky31)
  • Mixer kinetic (physical) temperature(tkxc)
  • Noise injection temp at nominal temperature at 23.8 GHz(tnd_nom23)
  • (tknd)
  • 23.8 GHz sky signal(sky23)
  • Noise injection temp at nominal temperature at 31.4 GHz(tnd_nom31)
  • IR Brightness Temperature(ir_temp)
  • Mean 23.8 GHz sky brightness temperature(tbsky23)
  • Ambient temperature(tkair)
  • Temperature correction coefficient at 31.4 GHz(tc31)
  • Temperature correction coefficient at 23.8 GHz(tc23)

nsamwrtipC1.a1:
  • Noise injection temp at nominal temperature at 23.8 GHz(tnd_nom23)
  • Temperature correction coefficient at 31.4 GHz(tc31)
  • (tknd)
  • 23.8 GHz sky signal(tipsky23)
  • Noise injection temp at 23.8 GHz adjusted to tkbb(tnd23)
  • 31.4 GHz goodness-of-fit coefficient(r31)
  • Mixer kinetic (physical) temperature(tkxc)
  • 23.8 GHz sky brightness temperature derived from tip curve(tbskytip23)
  • Ambient temperature(tkair)
  • 31.4 GHz sky signal(tipsky31)
  • Noise injection temp at 23.8 GHz derived from this tip(tnd23I)
  • Noise injection temp at 31.4 GHz adjusted to tkbb(tnd31)
  • Total liquid water along zenith path using tip-derived brightness temperatures(liqtip)
  • Noise injection temp at 31.4 GHz derived from this tip(tnd31I)
  • Temperature correction coefficient at 23.8 GHz(tc23)
  • Noise injection temp at nominal temperature at 31.4 GHz(tnd_nom31)
  • 31.4 GHz blackbody(bb31)
  • 23.8 GHz Blackbody signal(bb23)
  • 31.8 GHz sky brightness temperature derived from tip curve(tbskytip31)
  • 23.8 GHz goodness-of-fit coefficient(r23)
  • Total water vapor along zenith path using tip-derived brightness temperatures(vaptip)
  • Blackbody kinetic temperature(tkbb)
  • 31.4 GHz blac2body+noise injection signal(bbn31)
  • 23.8 GHz blackbody+noise injection signal(bbn23)


Back To Table of Contents

DQRID : D050928.4
Start DateStart TimeEnd DateEnd Time
09/20/2002025109/15/20051722
Subject:
NSA/MWR/C2 - New software version (4.15) installed
DataStreams:nsamwrlosC2.b1, nsamwrtipC2.a1
Description:
A problem began with the installation of MWR.EXE version 4.12 in September 2002. The 
software had been upgraded from a "DOS" to a "Windows"-compiled program to address an earlier 
problem.  The software upgrade corrected the earlier problem but introduced a new one 
that caused line-of-sight observing cycles to be skipped, a 15% reduction in the number of 
tip curves, and saturation of CPU usage.  Software versions 4.13 and 4.14 also produced 
these problems.

The new MWR software version (4.15) was installed on 9/15/2005. As a consequence of this 
upgrade, the tip curve frequency increased. The tip cycle time decreased from ~60s to ~50s.
Measurements:nsamwrlosC2.b1:
  • Noise injection temp at nominal temperature at 31.4 GHz(tnd_nom31)
  • 23.8 GHz sky signal(sky23)
  • 23.8 GHz Blackbody signal(bb23)
  • Mean 23.8 GHz sky brightness temperature(tbsky23)
  • 23.8 GHz blackbody+noise injection signal(bbn23)
  • Mean 31.4 GHz sky brightness temperature(tbsky31)
  • Mixer kinetic (physical) temperature(tkxc)
  • Noise injection temp at 31.4 GHz adjusted to tkbb(tnd31)
  • 31.4 GHz blac2body+noise injection signal(bbn31)
  • Averaged total liquid water along LOS path(liq)
  • IR Brightness Temperature(ir_temp)
  • Blackbody kinetic temperature(tkbb)
  • MWR column precipitable water vapor(vap)
  • Noise injection temp at nominal temperature at 23.8 GHz(tnd_nom23)
  • Ambient temperature(tkair)
  • Temperature correction coefficient at 31.4 GHz(tc31)
  • Temperature correction coefficient at 23.8 GHz(tc23)
  • Noise injection temp at 23.8 GHz adjusted to tkbb(tnd23)
  • (tknd)
  • 31.4 GHz sky signal(sky31)
  • Sky Infra-Red Temperature(sky_ir_temp)
  • 31.4 GHz blackbody(bb31)

nsamwrtipC2.a1:
  • 23.8 GHz blackbody+noise injection signal(bbn23)
  • 31.4 GHz sky signal(tipsky31)
  • Noise injection temp at nominal temperature at 31.4 GHz(tnd_nom31)
  • Noise injection temp at 31.4 GHz adjusted to tkbb(tnd31)
  • Noise injection temp at 31.4 GHz derived from this tip(tnd31I)
  • Noise injection temp at 23.8 GHz derived from this tip(tnd23I)
  • 31.4 GHz goodness-of-fit coefficient(r31)
  • 31.8 GHz sky brightness temperature derived from tip curve(tbskytip31)
  • Ambient temperature(tkair)
  • 23.8 GHz sky brightness temperature derived from tip curve(tbskytip23)
  • Total water vapor along zenith path using tip-derived brightness temperatures(vaptip)
  • 23.8 GHz sky signal(tipsky23)
  • Mixer kinetic (physical) temperature(tkxc)
  • 31.4 GHz blac2body+noise injection signal(bbn31)
  • 31.4 GHz blackbody(bb31)
  • (tknd)
  • Temperature correction coefficient at 23.8 GHz(tc23)
  • 23.8 GHz goodness-of-fit coefficient(r23)
  • Blackbody kinetic temperature(tkbb)
  • Noise injection temp at nominal temperature at 23.8 GHz(tnd_nom23)
  • Noise injection temp at 23.8 GHz adjusted to tkbb(tnd23)
  • Total liquid water along zenith path using tip-derived brightness temperatures(liqtip)
  • 23.8 GHz Blackbody signal(bb23)
  • Temperature correction coefficient at 31.4 GHz(tc31)


Back To Table of Contents



END OF DATA